近期在看开集识别论文《Towards Open Set Deep Networks 》,对作者借鉴的Meta recognitioin思想不是很了解,便去看了一下原文章《Meta-Recognition: The Theory and Practiceof Recognition Score Analysis》。苦于网上没有相关资料,自己智能硬着头皮看,最后分享自己的一点浅薄的理解(因为自己了解的也不够深入,所以仅简单列了几点),有不对的地方还请指正,谢谢大家!
1、文章的目的
文中交代的比较清楚,可以从整体流程图或文中交代的文字:“Can we recognize, in some automated fashion, if a recognition system result is a success or a failure? If so, can we quantify the probability of success or failure?” 中看出,翻译一下就是meta recognition的目的是自动化地判断recognition system的结果成功或失败的概率。也就是对recognition system(比如分类系统)的结果进一步判断,判断其结果是否成功或失败。

2、如何判断recognition system成功或失败的概率
作者文中是对单个probe进行判别,但是对于单个probe来说,能够正确匹配(文中用的是match)该类别的score有限,而不与其匹配(non-match)的score却有很多。因此,作者的思路是对non-match的score的分布进行拟合,然后判断match的score是否符合该分布,如果符合拟合的分布,则说明recognition system得到的对该probe的score应该是non-match的,也就是recognition system得到的结果是失败的,反之则是成功的。注:(加黑的话是重点,不懂得请多读几遍或者留言讨论)
3、为什么要用极值分布?
对于单个probe match的score而言,其通常位于分布的尾部,而尾部的分布通常不遵循正态分布或其他常见的分布,因此作者选用了极值分布来进行建模。对于极值分布的拟合而言,其步骤通常为:(1)选择一个连续性分布作为原始分布(如图2中的左上);(2)将原始分布分为若干子区间,并选择每个子区间的最大值作为该子区间的极值;(3)这些若干子区间所有极值组成的分布即为极值分布。(过程如图2下方)
作者在论文中提到“with enough samples and enough classes the sampling of the top-n scores always results in a EVT distribution and is Weibull if the data are bounded.” 。因此,作者索性直接选取non-match的top-n个score(去除了可能match的第一个值,即top-n是从第二个值算起的)来拟合极值分布。同时score是有界的,所以作者最终选用了Weibull分布作为极值分布,并用top-n个score对Weibull分布进行拟合。
以上均为个人见解,若有问题请留言,作者会及时处理,谢谢大家!