【问答】泰勒展开式

泰勒展开式(Taylor Series)是一种用多项式来逼近函数的方法。对于一个光滑的函数f(x)在某点a处展开的泰勒级数可以表示为:

f ( x ) = f ( a ) + f ′ ( a ) ( x − a ) + f ′ ′ ( a ) 2 ! ( x − a ) 2 + f ′ ′ ′ ( a ) 3 ! ( x − a ) 3 + ⋯ f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f'''(a)}{3!}(x-a)^3 + \cdots f(x)=f(a)+f(a)(xa)+2!f′′(a)(xa)2+3!f′′′(a)(xa)3+

其中,f(a)为函数f在点a处的函数值,f’(a)为f在点a处的一阶导数,f’'(a)为f在点a处的二阶导数,依此类推。

泰勒展开式的求导公式为:

f ( n ) ( a ) = d n f ( x ) d x n ∣ x = a f^{(n)}(a) = \frac{d^n f(x)}{dx^n} \Bigg|_{x=a} f(n)(a)=dxndnf(x) x=a

你可以使用这个公式来计算泰勒展开式的各项系数。

需要注意的是,泰勒展开只在收敛区间内有效,即展开式中(x-a)的幂次数不能无限增长。
以下是一些常用函数在零点附近的泰勒展开式:

指数函数展开式: e x = 1 + x + x 2 2 ! + x 3 3 ! + ⋯ = ∑ n = 0 ∞ x n n ! e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots = \sum_{n=0}^{\infty} \frac{x^n}{n!} ex=1+x+2!x2+3!x3+=n=0n!xn

正弦函数展开式: sin ⁡ ( x ) = x − x 3 3 ! + x 5 5 ! − x 7 7 ! + ⋯ = ∑ n = 0 ∞ ( − 1 ) n x 2 n + 1 ( 2 n + 1 ) ! \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} sin(x)=x3!x3+5!x57!x7+=n=0(2n+1)!(1)nx2n+1

余弦函数展开式: cos ⁡ ( x ) = 1 − x 2 2 ! + x 4 4 ! − x 6 6 ! + ⋯ = ∑ n = 0 ∞ ( − 1 ) n x 2 n ( 2 n ) ! \cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots = \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} cos(x)=12!x2+4!x46!x6+=n=0(2n)!(1)nx2n

自然对数函数展开式: ln ⁡ ( 1 + x ) = x − x 2 2 + x 3 3 − x 4 4 + ⋯ = ∑ n = 1 ∞ ( − 1 ) n − 1 ⋅ x n n \ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots = \sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{x^n}{n} ln(1+x)=x2x2+3x34x4+=n=1(1)n1nxn

这些泰勒展开式可以帮助你近似计算这些函数在零点附近的取值。
当然,以下是一些更多函数在零点附近的泰勒展开式:

正切函数展开式: tan ⁡ ( x ) = x + x 3 3 + 2 x 5 15 + 17 x 7 315 + ⋯ \tan(x) = x + \frac{x^3}{3} + \frac{2x^5}{15} + \frac{17x^7}{315} + \cdots tan(x)=x+3x3+152x5+31517x7+

余切函数展开式: cot ⁡ ( x ) = 1 x − x 3 − x 3 45 − 2 x 5 945 − ⋯ \cot(x) = \frac{1}{x} - \frac{x}{3} - \frac{x^3}{45} - \frac{2x^5}{945} - \cdots cot(x)=x13x45x39452x5

双曲正弦函数展开式: sinh ⁡ ( x ) = x + x 3 3 ! + x 5 5 ! + x 7 7 ! + ⋯ = ∑ n = 0 ∞ x 2 n + 1 ( 2 n + 1 ) ! \sinh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \cdots = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!} sinh(x)=x+3!x3+5!x5+7!x7+=n=0(2n+1)!x2n+1

双曲余弦函数展开式: cosh ⁡ ( x ) = 1 + x 2 2 ! + x 4 4 ! + x 6 6 ! + ⋯ = ∑ n = 0 ∞ x 2 n ( 2 n ) ! \cosh(x) = 1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \cdots = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!} cosh(x)=1+2!x2+4!x4+6!x6+=n=0(2n)!x2n

这些泰勒展开式对于近似计算各种函数在零点附近的取值非常有用。你可以根据需要选择适合的展开式来进行计算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值