常微分方程机敏问答[3] #20210622

本文档详细探讨了常微分方程的解的存在性、唯一性、分岔理论及其应用,包括皮卡序列、压缩映射、欧拉折线法等解的存在性证明,并涉及解的结构、数值解以及几何直观。此外,还讨论了分岔现象,如鞍-结点分岔,以及分岔在物理问题中的应用。内容深入,适合有一定基础的读者复习和学习。
摘要由CSDN通过智能技术生成


本专栏主要作个人复习自测,有相关知识预备的同学也可作复习用。不保证无相应基础的人士能看明白。
万一考试考到了,或者对你的学习有较大帮助,一键三连不过分吧(斜眼笑)

存在唯一性定理

  1. 对于没有解析解的微分方程,我们可能有什么考察的角度?
  2. 叙述皮卡定理中“首先达到左右边界”和“首先达到上下边界”分别对应什么样的解存在闭区间。李氏条件用在了哪里?
  3. 叙述与初值问题 y ′ = f ( x , y ) , y ( 0 ) = y 0 y'=f(x,y),y(0)=y_0 y=f(x,y),y(0)=y0等价的积分方程。怎么把该方程改写成皮卡序列迭代所用到的公式
  4. 迭代有意义前提是不会超出上下边界。所以需要证明 y n ( x ) − y 0 y_n(x)-y_0 yn(x)y0关于 ∣ x − x 0 ∣ |x-x_0| xx0有什么结论?
  5. 此处证明函数项级数一致收敛用的是M判别法,其中考察的收敛的数项级数是什么?反设有两个解 u ( x ) , v ( x ) u(x),v(x) u(x),v(x),证明唯一性时,考察的数项级数和前面的有何异同?
  6. 证明皮卡定理时,一致收敛用在了什么地方?
  7. 说明李氏条件是Osgood条件的特例(提示: ∫ 0 δ d r / L r = ∞ \int_0^\delta dr/Lr=\infty 0δdr/Lr=)。用李氏条件或Osgood条件证明唯一性的核心思想是考察什么的积分?
  8. 不满足李氏条件(从而Osgood条件)下解一定不唯一嘛?皮卡序列一定收敛吗?
  9. 利用考察6.中积分类似的方法,还能证明 f f f关于 y y y单调时,解具有什么样的唯一性?
  10. 回忆解的存在唯一性定理证明过程,如何估计 y ′ = x 2 − y 2 , y ( − 1 ) = 0 , ∣ x + 1 ∣ ≤ 1 , ∣ y ∣ ≤ 1 y'=x^2-y^2,y(-1)=0,|x+1|\le 1,|y|\le 1 y=x2y2,y(1)=0,x+11,y1的解的存在区间?
  11. 用类似于皮卡定理证明过程的归纳法,可以得到皮卡序列和真解的一个差上界 ∣ y n − y ∗ ∣ ≤ M L L n + 1 ∣ x − x 0 ∣ n + 1 ( n + 1 ) ! |y_n-y^*|\le\frac ML \frac{L^{n+1}|x-x_0|^{n+1}}{(n+1)!} ynyLM(n+1)!Ln+1xx0n+1。由此简要说出如何提高解的精度。

答案

  1. 解的结构(线性空间?流形?),数值解,存在唯一性,几何直观等。
  2. [ x 0 − a , x 0 + a ] , [ x 0 − b / M , x 0 + b / M ] ( M > m a x x , y ∣ f ( x , y ) ∣ ) [x_0-a,x_0+a],[x_0-b/M,x_0+b/M](M>max_{x,y}|f(x,y)|) [x0a,x0+a],[x0b/M,x0+b/M](M>maxx,yf(x,y)). 李氏常数用途:对迭代不同次数的结果之间(如 y 1 y_1 y1 y 2 y_2 y2之间),估计对应的 x x x处,两个 f ( x , y ) f(x,y) f(x,y)的差。(注:若再积分,即可估计 y 1 y_1 y1 y 2 y_2 y2的差)
    我们直接使用了一些课本上的记号,下同。
  3. ϕ ( x ) = y 0 + ∫ x 0 x f ( x , ϕ ( x ) ) d x ( x 在 一 定 范 围 内 ) \phi(x)=y_0+\int_{x_0}^x f(x,\phi(x))dx(x在一定范围内) ϕ(x)=y0+x0xf(x,ϕ(x))dx(x),不断“近似认为”右侧 ϕ = y k \phi=y_k ϕ=yk,就是迭代公式 ϕ k + 1 ( x ) = y 0 + ∫ x 0 x f ( x , ϕ k ( x ) ) d x \phi_{k+1}(x)=y_0+\int_{x_0}^xf(x,\phi_k(x))dx ϕk+1(x)=y0+x0xf(x,ϕk(x))dx.
  4. ∣ y n ( x ) − y 0 ∣ ≤ M ∣ x − x 0 ∣ |y_n(x)-y_0|\le M|x-x_0| yn(x)y0Mxx0.
  5. M L L n ∣ x − x 0 ∣ n n ! \frac ML \frac{L^n|x-x_0|^n}{n!} LMn!Lnxx0n. 证明唯一性:初始是一个常数界 K K K,表示两解之差上界。证明迭代收敛:初始是 M ∣ x − x 0 ∣ M|x-x_0| Mxx0. (当然,证明的表达形式很多,言之有理即可)
  6. 交换积分和极限顺序。
  7. 略。都要考察 f ( x , y 1 ( x ) ) − f ( x , y 2 ( x ) ) f(x,y_1(x))-f(x,y_2(x)) f(x,y1(x))f(x,y2(x))积分,从而得到两解之差(的变化量)。
  8. 不一定,不一定。(如“米勒之例”)
  9. 单侧。
  10. 最简单的:直接考虑 m i n { a , b / M } = 1 / 4 min\{a,b/M\}=1/4 min{ a,b/M}=1/4. 即得解得存在区间为 [ − 1.25 , − 0.75 ] [-1.25,-0.75] [1.25,0.75]或更大。
    稍精确:右侧 m i n { a , b / M } = 1 min\{a,b/M\}=1 min{ a,b/M}=1显然。考察左侧,为了使得 a = b / M a=b/M a=b/M,列方程 h = 1 / ( 1 + h ) 2 h=1/(1+h)^2 h=1/(1+h)2,即 h 3 + 2 h 2 + h − 1 : = f ( h ) = 0 h^3+2h^2+h-1:=f(h)=0 h3+2h
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值