Masked Image Modelling(MAE,iBOT,Data2vec,SimMIM,CAE,BEVT)

这篇文章主要整理kaiming大神所提出的MAE,和沿着MAE发展的几个代表性变体模型。
在这里插入图片描述
Masked Autoencoders Are Scalable Vision Learners
MAE的最突出的贡献是在iGPT和BEiT的基础上,化繁为简,让BERT式预训练能真正在CV上也能训到很好,即CV届的BERT/GPT-3!为了理解这句话,可以首先看看kaiming大神在一开头就提出的问题:为什么CV和NLP用的masked autoencoder不一样?(博主的理解是为什么CV非要改装之后才能用Transformer)。比如对于iGPT的做法是马赛克图像使其变成色块patch再输入Transformer;BEiT用dVAE离散化图像再用Decoder还原。主要是因为,

  • 结构上(Architecture)。CV和NLP直到最近在结构上都是不一样的,CNN天然适合图像领域,要像Transformer运行需要mask,position token这些不够自然,因此也造成了这第一个困难。不过随着ViT的提出,相比iGPT的马赛克、dVAE的离散化来说,ViT这种patch形态是对信息损失最少且相对高效的。
  • 信息密度上(Information density)。语言是由人类产生的信号,具有高度的语义性和信息密集性。相反,图像是具有大量空间冗余的自然信号,其实遮挡patch、word去预测的时候,图像要比文本容易很多,一般只需要通过周边的patch即可推理出来。所以这篇文章给的策略是:mask掉非常多的随机补丁,比如90%以上。这种策略可以在很大程度上减少冗余,增强模型的理解能力。
  • Decoder上。语言中解码器预测包含丰富语义信息的缺失单词(语义级别高),而视觉中的解码器重建像素(语义级别低)。对于复原图像来说,如果太关注细节就会损失高维抽象能力,因此这篇文章的策略是非对称编码解码器(asymmetric encoder-decoder),即encoder只负责抽取高维表示且仅对没有掩码的信号进行操作,而轻量级的decoder则负责从隐表示和带掩码的token中进行图像信号还原。

MAE的模型结构如上图,主要有一下几个部件:

  • Input。MAE 和 ViT 的做法一致,将图像切成patches。然后采用的非常高的mask rate,以大大减小冗余信息,增加重建 images 的困难。
  • MAE Encoder。主体和 ViT 的一样,但是这里的Encoder会只对整个图片 patches 小集合 (例如25%)进行操作,而删除掉有mask的patches,即这个小子集是unmasked patches组成。而不使用BERT那种特殊字符作为掩码标记。
  • MAE Decoder。操作集合是整个图片 patches,仅用于预训练期间执行图像重建任务。在非对称的设计下,解码器可以很轻量来缩短预训练的时间。
  • Reconstruction。Linear层,归一化的像素算MSE Loss。

从结果上看,MAE在ImageNet-1k过了所有在ImageNet-21k pre-training 的 ViT 变体模型们。证明了重建原图pixel的重要性,这种非常直观的MIM对比起MLM来看,开头的那句CV届的GPT-3应该真的不远了。

  • paper:https://arxiv.org/abs/2111.06377

How to Understand Masked Autoencoder
补一篇MAE的理论证明。首先作者整理了MAE的主要贡献:

  • 1K数据集训练就有很好效果,可以促使人们重新考虑ViT的研究。此外,性能超监督学习且展现出其强大的scaling能力。
  • MAE作为一种生成式模型打败了对比式模型如MoCo。
  • 搭起CV和NLP的桥梁。

然后作者提出了五大理论分析问题:

  • 1MAE模型的表示空间(representation space)是如何形成的、优化的和传播的?A:MAE中的注意机制等价于一个可学习的积分核变换,其表示能力由巴伦空间Barron space动态更新,位置嵌入作为高维特征空间的坐标。
  • 2图像的patch为什么有助于MAE模型的学习?A:在图像的低秩性质的常见假设下,我们证明了MAE的随机补丁选择保留了原始图像的信息,同时降低了计算成本。(其实这也是为什么MIM的方式要比对比学习好的愿意之一,对比学习的增强方式如crop都有分布偏差如集中在中部,那么在泛化时不够通用,而MIM是随机还原各个区域,因此学到的表征可能会更加通用)
  • 3为什么MAE模型内部低层和高层输出的特征表示之间没有显著的差异?A:ViT主干中的缩放点积注意在跨层传播过程中提供了稳定的表示。
  • 4decoder对于MAE模型不重要吗?A:解码器对于帮助编码器建立更好的表示是至关重要的,即使解码器在预训练后被丢弃。由于MAE解码器中的补丁维数更大,它允许编码器中的表示空间通过巴伦空间的函数更加丰富,以学习更好的基础。
  • 5MAE对每一个masked patch的重建仅仅是依据其邻居patch进行推断的吗?A:masked patch的潜在表示是基于由注意机制学习的补丁间拓扑进行全局插值的。

详细数学证明请参看全文:
paper:https://arxiv.org/abs/2202.03670
在这里插入图片描述
iBOT:Image BERT Pre-training with Online Tokenizer
大多数 CV 的自监督学习关注的往往是图片的global view比如 MoCo,而没有认真研究 image,而MAE的出现使MIM变成现实。这篇iBOT的关注点主要在于,Online Tokenizer:

  • NLP的lingual tokenizer 非常重要,其把词语变成富含语义的 tokens。
  • CV的visual tokenizer非常重要,那么它也应该把图片变成富含语义的 tokens。

但由于图像连续分布且存在大量冗余的底层细节信息,visual semantic不容易被提取。因此,作者们提出先训练一个 off-the-shelf 的 tokenizer来学习带有丰富语义的 tokens。类似BEiT的dVAE ,但作者希望能学到更高级的语义,这种高级语义的定义为:1)具备完整表征连续图像内容的能力;2)像 NLP 中的 tokenizer 一样具备高层语义。具体方法如上图,主要使用知识蒸馏,待训练的ViT输入masked images,而Online tokenizer 接收原始图像,目标让ViT的重建masked patch token。与MAE的区别就在于,MAE是Decoder来重建,而IBOT让Encoder来输出重建以学习高维信息。
在这里插入图片描述

  • Input。学生网络输入masked token,教师网络是全部,目标是让学生网络有能力重建。
  • loss。损失函数1,2是 patch上的自蒸馏,让学生的输出和教师越接近越好。损失函数3,4是[CLS]上的自蒸馏,让online tokenizer 学习到高语义特征。都是做Contrastive Learning。

paper:https://arxiv.org/abs/2111.07832

在这里插入图片描述
Data2vec: A General Framework for Self-supervised Learning in Speech, Vision and Language
这篇文章扩展Tokenizer到多模态数据,是一个通用的自监督学习框架,同时适用于图像、语音和文本。主要模型架构如上图。其核心就在于对不同模态采用不同的编码方式以及掩码方式。

  • 文本 : 常规token embedding和token masking。
  • 图像:patch embedding和block-wise masking。
  • 语音:多层一维卷积对waveform进行embedding和span masking。

Teacher-Student和iBOT较像,细节可以看原文。

  • paper:https://ai.facebook.com/research/data2vec-a-general-framework-for-self-supervised-learning-in-speech-vision-and-language
  • project:https://github.com/pytorch/fairseq/tree/main/examples/data2vec

在这里插入图片描述
SimMIM: A Simple Framework for Masked Image Modeling
来自CVPR2022的文章。这篇文章同样也从nlp和cv中建模MIM任务的不同之处,作者们主要认为有以下几点:

  • 图像具有更强的局部关系,即相互靠近的像素往往是高度相关的。
  • 视觉信号是原始的、低层次的,而语言是高级概念。
  • 视觉信号是连续的,而词是离散的。

SimMIM的模型架构由 4 个部分组成:

  • Masking strategy:给定一张输入图像,该组件负责选择掩码的区域及实现所选区域的掩码。经过掩码后的图像将用作模型输入。 分中心区域掩码策略(随机)和块级掩码策略( 16x16 和 32x32 )。在这里插入图片描述
  • Encoder architecture:编码器提取掩码图像上潜在的特征表示,然后用来预测掩码区域的原始信号。主要考虑两种典型的vision Transformer架构: vanilla ViT和Swin Transformer。
  • Prediction head:预测头用于潜在的特征表示,表示掩码区域中的原始信号。
  • Prediction target:预测原始像素值,或原始像素的变换。损失函数包括交叉熵分类损失和l1或l2回归损失。

paper:https://arxiv.org/pdf/2111.09886.pdf
code:https://github.com/microsoft/SimMIM

在这里插入图片描述
CAE: Context AutoEncoder for Self-Supervised Representation Learning
本文的motivation在于:MAE、BEiT、ViT等等模型的Encoder & Decoder 解耦模式会影响 Encoder 的学习能力。即虽然Encoder 学表征,Decoder 做预训练,之后迁移到下游时Decoder往往会被抛弃。作者认为这种方式,即使Encoder表征不够好,也有Decoder在后面做修正,这将限制Encoder 的表征学习能力。

所以提出CAE(Context AutoEncoder),模型结构如上,关键组件在于Latent Contextual Regressor,Regressor由transformer blocks组成,成为一个语义阻断器使Decoder和Encoder之间的分工更为明确,可以对比看一下MAE和CAE的输入输出:

  • MAE : Encoder 仅接受 visible(un-masked) patches,Decoder接受编码结果和masked tokens一起预测masked patches 的像素值。
  • Regressor:它会输入masked patches当Q+un-masked patches当KV,然后Regressor 仅将 masked tokens 表征送给 Decoder。因此Decoder拿不到un-masked patches 的表征,所以阻止了它也去学un-masked表征。
  • Alignment:同时对于masked表征也不让Decoder学,就会将Regressor 估计的 masked tokens 表征与 Encoder 对于 masked patches 进行编码得到的表征对齐。

确实比较巧妙,可以看看作者的代码实现

  • https://github.com/lxtGH/CAE

在这里插入图片描述
BEVT: BERT Pretraining of Video Transformers
继续更一篇CVPR2022,开始从image做到video了。不同于静态图像,除了空间先验信息,视频中包含着运动、物体间交互等丰富的动态信息,因此做到视频中的MVM需要同时学习空间先验信息和时间动态信息。

模型框架图如上,在image上的空间表征学习(Masked Image Modeling)和在video的时间动态信息表征学习(Masked Video Modeling)进行联合训练的双路架构,并分别通过同一种 BERT 的掩码预测自监督任务进行训练。

  • Masked Image Modeling。掩码图像建模的训练目标是从掩码输入中恢复对应的离散视觉 token。使用 blockwise masking 方式。
  • Masked Video Modeling。视频会被切分为若干 3D patches,掩码视频建模的目标也是从掩码三维输入中恢复对应的离散视觉 token。使用适用于时空三维输入的 tube masking 方式。

BEVT 也使用预训练的 VQ-VAE 将连续图像内容转换为离散视觉 token,作为自监督预训练任务的预测目标。

paper:https://arxiv.org/abs/2112.01529
code:https://github.com/xyzforever/BEVT

在这里插入图片描述
Masked Autoencoders As Spatiotemporal Learners
继续补kaiming大佬团队新出的文章,同样也是做到video里面去,主要结构如上图。

  • Patch Embedding : 类似ViT,沿空时维度拆分为无重叠的规则的网格块,然后flatten+位置嵌入过(只有空间域),线性投影层。
  • Masking : 非结构化随机采样,类似BERT和MAE。有一个很强的结论是:最优Mask比例与数据的信息冗余相关。即BERT的15%与MAE的75%已经表明:相比语言,图像具有更强的信息冗余,而这篇文章高达90%和95%的Mask比例则进一步证明了视频的冗余更多。
  • AutoEncoding : 延续MAE,编码器的ViT仅作用于可见块嵌入,解码器ViT比编码小。

https://arxiv.org/pdf/2205.09113.pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值