可解性和解的结构

线性代数与方程组求解

方程组的解和增广矩阵

如果一个线性方程组有解,通过消元得到全零行,那么该方程组的增广矩阵经过相同的消元后,对应行也必须为零,否则该方程组无解。换言之,增广矩阵必须与原矩阵同秩。

Ax=b 有解的条件

方程组 Ax=b 有解的判定方法有两个:

  1. 向量 b 在矩阵 A 的列空间中。
  2. A 的线性组合得到零向量,那么对应的系数给向量 b 也能得到零,即如果 Ax’=0,则 bx’=0。

特解与通解

对于方程组 Ax=b,特解是将自由分量置零后,求解主分量的解。这可以表示为 Ax=b 的特解。

如果 Ax₁=0 且 Ax₂=b,则 A(x₁+x₂)=b。

因此,Ax=b 的通解可以看作是 Ax=0 的解空间中偏移特解向量,相当于将特解视为 Ax=b 解空间的原点。虽然实际上这不是一个空间,但如果稍作偏移,将特解移到原点,那么它就是一个空间,与 Ax=0 的解空间相同。

满秩矩阵的情况

  • 当矩阵 A仅列满秩时,Ax=0 的解空间是零,因此 Ax=b 如果有解,只有唯一特解。
  • 当矩阵 A 仅行满秩时,必有无穷多解
  • 矩阵满秩,必有一个解,无论是什么b

因为列满秩消元法得到的矩阵是
R= [ I 0 ] \begin{bmatrix}I\\0\end{bmatrix} [I0]
行满秩
R= [ I F ] \begin{bmatrix}I&F\end{bmatrix} [IF],这里面 I I I不一定总在 F F F前面,实际上 I 和 F 可能是混搭的 I和F可能是混搭的 IF可能是混搭的
矩阵满秩
R= [ I ] \begin{bmatrix}I\end{bmatrix} [I]
不满秩
R= [ I F 0 0 ] \begin{bmatrix}I&F\\0&0\end{bmatrix} [I0F0]这里面可能有无穷解,也可能是无解

  • 6
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值