SVC(kernel=‘linear‘)和LinearSVC的不同

本文对比了SVC与LinearSVC在scikit-learn库中的区别,指出LinearSVC并非真正的线性SVM。重点介绍了它们的适用场景、性能差异及何时选择。链接提供了理论支持:https://scikit-learn.org/stable/modules/svm.html#svc。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

随手做一个笔记了算是:

Question:

  1. what’s different between SVC and LinearSVC in python sklearn library?
  2. Does the SVC(kernel='linear') have the same result on LinearSVC()
  3. if we want to model the linear kernel how do we choose?

Reply:

  1. What is the difference between SVC and SVM in scikit-learn?
    The SVM module (SVC, NuSVC, etc) is a wrapper around the libsvm library and supports different kernels while LinearSVC is based on liblinear and only supports a linear kernel.

  2. Under what parameters are SVC and LinearSVC in scikit-learn equivalent?
    Personally I consider LinearSVC one of the mistakes of sklearn developers - this class is simply not a linear SVM.
    To sum up: LinearSVC is not linear SVM, do not use it if do not have to.

  3. When should one use LinearSVC or SVC?
    Between SVC and LinearSVC, one important decision criterion is that LinearSVC tends to be faster to converge the larger the number of samples is. This is due to the fact that the linear kernel is a special case, which is optimized for in Liblinear, but not in Libsvm.

  4. From documentation, you can also see the theory and math:
    https://scikit-learn.org/stable/modules/svm.html#svc

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Kin-Zhang

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值