[论文笔记]神经元重建——DL Segmentation Improves Reconstruction

Li R, Zeng T, Peng H, et al.
Deep Learning Segmentation of Optical Microscopy Images Improves 3-D Neuron Reconstruction[J]. IEEE Transactions on Medical Imaging, 2017, 36(7): 1533-1541.

概述:

本文的主要思想是——分割(Deep learning)+重建(传统追踪算法)。3D-FCN(fully concolutional network,全卷积网络)进行逐像素分割,网络采用了inception模块和residual learning模块解决网络层数加深带来的问题,并加入deconvolutioal layer实现端对端操作(输入输出图像大小一致);

算法步骤:

在这里插入图片描述

文章提出的几个问题:

  • CNN用于神经元图像分割的困难主要有:一是需要不同尺度的filters提取特征(主干细长,分支和bifurcation需要在小尺度上提取
    局部信息);二不同种类的样本之间差异过大;三是数据集中的图像质量相差较大(例如图像强度)。
  • inception模块使用不同尺度的卷积核进行特征提取;
  • 在loss层对前景和背景使用不同的权重,以解决前景和背景部分的像素数量不平衡问题。
  • 本文使用的评价指标:entire structure average、different structure、percentage of different structures。
内容概要:《2024年中国城市低空经济发展指数报告》由36氪研究院发布,指出低空经济作为新质生产力的代表,已成为中国经济新的增长点。报告从发展环境、资金投入、创新能力、基础支撑和发展成效五个维度构建了综合指数评价体系,评估了全国重点城市的低空经济发展状况。北京和深圳在总指数中名列前茅,分别以91.26和84.53的得分领先,展现出强大的资金投入、创新能力和基础支撑。低空经济主要涉及无人机、eVTOL(电动垂直起降飞行器)和直升机等产品,广泛应用于农业、物流、交通、应急救援等领域。政策支持、市场需求和技术进步共同推动了低空经济的快速发展,预计到2026年市场规模将突破万亿元。 适用人群:对低空经济发展感兴趣的政策制定者、投资者、企业和研究人员。 使用场景及目标:①了解低空经济的定义、分类和发展驱动力;②掌握低空经济的主要应用场景和市场规模预测;③评估各城市在低空经济发展中的表现和潜力;④为政策制定、投资决策和企业发展提供参考依据。 其他说明:报告强调了政策监管、产业生态建设和区域融合错位的重要性,提出了加强法律法规建设、人才储备和基础设施建设等建议。低空经济正加速向网络化、智能化、规模化和集聚化方向发展,各地应找准自身比较优势,实现差异化发展。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值