[论文笔记]神经元重建——DL Segmentation Improves Reconstruction

Li R, Zeng T, Peng H, et al.
Deep Learning Segmentation of Optical Microscopy Images Improves 3-D Neuron Reconstruction[J]. IEEE Transactions on Medical Imaging, 2017, 36(7): 1533-1541.

概述:

本文的主要思想是——分割(Deep learning)+重建(传统追踪算法)。3D-FCN(fully concolutional network,全卷积网络)进行逐像素分割,网络采用了inception模块和residual learning模块解决网络层数加深带来的问题,并加入deconvolutioal layer实现端对端操作(输入输出图像大小一致);

算法步骤:

在这里插入图片描述

文章提出的几个问题:

  • CNN用于神经元图像分割的困难主要有:一是需要不同尺度的filters提取特征(主干细长,分支和bifurcation需要在小尺度上提取
    局部信息);二不同种类的样本之间差异过大;三是数据集中的图像质量相差较大(例如图像强度)。
  • inception模块使用不同尺度的卷积核进行特征提取;
  • 在loss层对前景和背景使用不同的权重,以解决前景和背景部分的像素数量不平衡问题。
  • 本文使用的评价指标:entire structure average、different structure、percentage of different structures。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值