深度学习整理:semantic segmentation 继续学习(4)-基本概念与思路

目录

1.基本概念

2.semantic segmentation的宏观方法:

3.解码器

1.nearest neighbor pooling and bed of nails unpooling

2.max unpooling

3.transpose convolution

3.1 1-D signal

3.2 2-d signal


1.基本概念

1.super-pixels :超像素最直观的解释,便是把一些具有相似特性的像素“聚合”起来,形成一个更具有代表性的大“元素”。而这个新的元素,将作为其他图像处理算法的基本单位。非常详细的介绍,如传送门

2.under segmentation和over segmentation:

(自己的话,不专业)我认为翻译过来是欠分割和过分割。欠分割就是想分割出来的objects没完全分割出来,过分割是分割过头了。另外的图像解释如传送门

3.The Mean Shift segmentation:Mean Shift分割是一种局部均匀化技术,对于抑制局部对象中的阴影或色调差异非常有用。这是一个示意图:

详细内容见传送门

4.Shift-and-stitch:FCN文章中出现的知识点,在FCN中,与输入相比,获得的最终输出(默认情况下不使用任何上采样技巧)的分辨率较低。假设有一个100x100的输入图像,并且您获得了10x10的输出(来自网络)。将输出直接映射到输入分辨率将看起来不完整(即使使用高阶插值)。现在,采用相同的输入并稍微移位并获得输出并重复此过程多次。最终得到一组输出图像和一个与每个输出相对应的移位向量。可以利用具有移位矢量的这些输出图像(stitch&#

### 计算机视觉领域的专业术语列表 以下是计算机视觉领域的一些重要专业术语及其简要说明: #### 基础概念 1. **知识图谱 (Knowledge Graph)** 结构化知识表示的一种形式,通过图结构存储实体、属性以及它们之间的关系。它在搜索引擎、智能问答和推荐系统中有广泛应用[^1]。 2. **感兴趣区域 (Region of Interest, ROI)** 图像处理中的一个重要概念,指从图像中提取出的特定区域,用于后续分析或处理。ROI可以通过矩形、圆形或其他形状划定,从而提高计算效率并增强精度[^2]。 3. **灰度差平方 (Disparity Squared Intensity, DSI)** 定义为两个像素点之间灰度值差异的平方,常用于立体匹配算法中评估视差。 4. **视觉测量 (Vision Metrology)** 利用相机和其他光学设备进行高精度几何量测的技术,在工业检测和三维重建中具有重要作用。 5. **视觉里程计 (Visual Odometry)** 使用摄像头跟踪物体运动轨迹的方法,通常结合SLAM技术实现机器人导航等功能。 --- #### 学习方法理论 6. **过拟合 (Overfitting)** 当模型过于复杂以至于能够完美拟合训练数据却无法泛化到新样本的现象[^3]。 7. **迁移学习 (Transfer Learning)** 将在一个任务上学到的知识迁移到另一个相关任务上的过程,常见于深度神经网络预训练权重的应用场景。 8. **监督学习 (Supervised Learning)** 和 **无监督学习 (Unsupervised Learning)** 两种主要的机器学习范式。前者依赖标注好的输入-输出对构建预测模型;后者则试图从未标记的数据集中发现潜在模式。 9. **感知机 (Perceptron)** 最简单的线性分类器之一,作为人工神经元的基础单元广泛存在于早期的人工智能研究之中。 10. **深度学习框架** 如TensorFlow、PyTorch等工具包提供了丰富的API支持复杂的卷积层搭建以及其他高级操作。 11. **ImageNet 数据集** 大规模自然图片集合,包含数百万张带标签的照片按类别整理好供研究人员测试新型算法性能之需。 --- #### 技术应用方向 12. **目标检测 (Object Detection)** 自动识别给定场景内的多个对象位置边界框坐标的过程,YOLO系列就是典型代表作之一。 13. **语义分割 (Semantic Segmentation)** 对整幅画面按照不同种类分别着色划分开来使得每一块都对应唯一类别的任务名称。 14. **实例分割 (Instance Segmentation)** 不仅区分各个类别还要单独标识每一个个体成员的任务扩展版本。 15. **姿态估计 (Pose Estimation)** 预测人体关节关键部位所在空间具体方位角度参数等工作范畴。 16. **人脸识别 (Face Recognition)** 提取人脸特征向量并数据库记录对比完成身份验证或者检索功能模块开发流程环节部分组成要素构成整体解决方案架构设计思路体现出来表现形式呈现方式展示效果等方面考虑因素综合考量之后得出结论如下所示代码示例见下文Python脚本片段演示如何加载Haar级联分类器文件路径指定变量赋值初始化创建对象调用detectMultiScale()函数接口传入待检视频流帧缓冲区数组执行返回结果保存至局部临时容器等待进一步筛选过滤条件满足后绘制矩形轮廓线条颜色宽度样式设置完毕最终渲染显示界面窗口标题栏文字描述信息更新频率控制逻辑循环体内部嵌套分支判断语句组合而成完整程序清单如下: ```python import cv2 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') cap = cv2.VideoCapture(0) while True: ret, frame = cap.read() gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5) for (x,y,w,h) in faces: cv2.rectangle(frame,(x,y),(x+w,y+h),(255,0,0),2) cv2.imshow('Video',frame) if cv2.waitKey(1) & 0xFF == ord('q'): break cap.release() cv2.destroyAllWindows() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值