目录
前言
多模态融合的能用的场景有很多,比如2D/3D的目标检测、语义分割,还有Tracking任务。在这些任务中,重中之中就是模态之间的信息交互融合的工作。从传感器的的信息获取越来越高效精确,成本被压缩得越来越低,自主驾驶中感知任务中的多模态融合方法得到了快速发展的机遇。
多模态机器学习,英文全称 MultiModal Machine Learning (MMML)
模态(modal)是事情经历和发生的方式,我们生活在一个由多种模态(Multimodal)信息构成的世界,包括视觉信息、听觉信息、文本信息、嗅觉信息等等,当研究的问题或者数据集包含多种这样的模态信息时我们称之为多模态问题,研究多模态问题是推动人工智能更好的了解和认知我们周围世界的关键。