云计算实战应用案例精讲-【深度学习】多模态融合(补充篇)

目录

前言

几个相关概念

1.1 模态

1.2 多模态

知识储备

1.多模态学习

1.1相关综述文章与领域全貌概览

1.2 多模态学习:表示与融合

1.3 多模态研究的重要准则

2.多模态表示

2.1完备表示

2.2协同正则化

 多模态学习典型任务

跨模态预训练

Language-Audio

Vision-Audio

 Vision-Language

定位相关的任务

更多模态

算法原理

多模态的发展历史

行为时代

计算时代

交互时代

深度学习时代

多模态融合

模型无关的融合方法

基于模型的融合方法

各种任务以及数据集的介绍

目标检测

语义分割

融合模式

Early Fusion

Deep-fusion

Late-fusion

Asymmetry-fusion

Weak-Fusion

Other-Fusion

模态对齐方法

显式对齐方法

隐式对齐方法

算法拓展

TupleInfoNCE 的对比多模态融合

1、自监督学习的相关内容

2.论文的问题解决思路与方法

3.重新思考InfoNCE

4.TupleInfoNCE 的设计与实现

5、实验

6、进一步分析和讨论

多模态融合存在的问题及挑战

合理利用多个模态的信息

感知传感器的内在问题

表征Representation

联合表征

协同表征

翻译Translation

常见应用

基于实例的方法

模型驱动的方法

翻译的评估困境

对齐Alignment

显式对齐

隐式对齐

融合Fusion

模型无关的方法

基于模型的方法

协同学习Co-learning

并行

非并行

 混合


前言

多模态融合的能用的场景有很多,比如2D/3D的目标检测、语义分割,还有Tracking任务。在这些任务中,重中之中就是模态之间的信息交互融合的工作。从传感器的的信息获取越来越高效精确,成本被压缩得越来越低,自主驾驶中感知任务中的多模态融合方法得到了快速发展的机遇。

多模态机器学习,英文全称 MultiModal Machine Learning (MMML)

模态(modal)是事情经历和发生的方式,我们生活在一个由多种模态(Multimodal)信息构成的世界,包括视觉信息、听觉信息、文本信息、嗅觉信息等等,当研究的问题或者数据集包含多种这样的模态信息时我们称之为多模态问题,研究多模态问题是推动人工智能更好的了解和认知我们周围世界的关键。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值