《动手学深度学习》第十二天---二维卷积层

最近在学着看别人写的代码,对于卷积的过程不是很理解,刚好深度学习课程学到了。

利用CNN的组合性:每个卷积核可以看做某种特征的提取器。所谓组合性就是将卷积核提取的一些简单特征进行组合,得到更高级的特征。比如图像的人脸分类:
第一个卷积层,可能只是从原始图像像素中学习到一些边缘特征,第二个卷积层可以从这些边缘特征中探测到简单的形状特征,然后接下来的卷积层,就可以用这些简单的形状特征探测到更高级的特征。比如人脸的形状。

(一)二维互相关运算(cross-correlation)

卷积层中常用的算法是二维互相关运算,单个通道的互相关运算:(多通道)
在这里插入图片描述
如阴影部分过程大概是:
0×0+1×1+3×2+4×3=19,其他同。

from mxnet import autograd, nd
from mxnet.gluon import nn

def corr2d(X, K):  # 二维互相关运算,X为输入数组,K为核数组,输出数组为Y
    h, w = K.shape #h为卷积核的长,w为卷积核的宽
    Y = nd.zeros((X.shape[0] - h + 1, X.shape[1] - w + 1))
    #Y的长应该是输入数组长度减去核数组长度加一,Y的宽是输入数组宽度减去核数组宽度加一,初始化为0数组。
    for i in range(Y.shape[0]):
        for j in range(Y.shape[1]):
            Y[i, j] = (X[i: i + h, j: j + w] * K).sum() #卷积计算方法,如上图
    return Y

(二)二维卷积层(Conv2D)

过程是将输入数组和卷积核进行互相关运算,再加上一个标量偏差来得到输出。

class Conv2D(nn.Block): #定义二维卷积层
    def __init__(self, kernel_size, **kwargs):
        super(Conv2D, self).__init__(**kwargs)
        self.weight = self.params.get('weight', shape=kernel_size)
        self.bias = self.params.get('bias', shape=(1,))
#  以classCount.get(key,default=None)为例: 
#  classCount.get(key,default)返回字典classCount中key元素对应的值,若无,则返回默认值(进行初始化)
        def forward(self, x):
            return corr2d(x, self.weight.data()) + self.bias.data()

(三)图像中物体边缘的检测

卷积层可以找到物体边缘,即找到像素变化的位置,有效表征局部区域
首先构造一个图像X,像素为1表示白,像素为0 表示黑:

X = nd.ones((6, 8))
X[:, 2:6] = 0
X

在这里插入图片描述
然后构造卷积核,使它在做横向运算时,如果元素相同输出就为0,元素变化时输出为1,构造一个1×2的卷积核:

K = nd.array([[1, -1]])

在这里插入图片描述
对X和K进行互相关运算得到输出图像Y:
在这里插入图片描述
可以看到在由黑变白的区域和由白变黑的区域会产生分界线,0代表灰色,1代表白色,-1代表黑色。

思考题:如果是水平边缘呢?
在这里插入图片描述

(四)通过数据学习核数组

使用Gluon提供的Conv2D类实现自动求梯度,

class mxnet.gluon.nn.Conv2D(channels, kernel_size, strides=(1, 1), 
padding=(0, 0), dilation=(1, 1), groups=1, layout='NCHW', activation=None, 
use_bias=True, weight_initializer=None, bias_initializer='zeros', 
in_channels=0, **kwargs)

2d卷积层(例如图像上的空间卷积)。该层创建卷积核,该卷积核与层输入卷积以产生输出张量。如
果use_bias为真,则会创建一个偏置向量并将其添加到输出中。最后,如果激活不是无,它也应用
于输出。如果未指定in _ channel,参数初始化将推迟到第一次调用forward时进行,并且in _ c
hannel将从输入数据的形状中推断出来。

使用物体边缘检测中的输入数据X和输出数据Y来学习我们构造的核数组K。

conv2d = nn.Conv2D(1, kernel_size=(1, 2))
#构造一个输出通道为1,形状是1×2的卷积核
conv2d.initialize()

# 二维卷积层使用4维输入输出,格式为(样本, 通道, 高, 宽),这里批量大小(批量中的样本数)和通
# 道数均为1

X = X.reshape((1, 1, 6, 8))     #4维输入输出(样本,通道,高,宽)
Y = Y.reshape((1, 1, 6, 7))

for i in range(10):     #训练十个周期
    with autograd.record():
        Y_hat = conv2d(X)      #由X和卷积核计算得到Y_hat
        l = (Y_hat - Y) ** 2      #l是有关小批量X和Y的损失
    l.backward()   #小批量的损失对模型参数求导
    # 简单起见,这里忽略了偏差
    conv2d.weight.data()[:] -= 3e-2 * conv2d.weight.grad()  
    #由于小批量大小为1,所以w=w-lr*△w
    if (i + 1) % 2 == 0:
        print('batch %d, loss %.3f' % (i + 1, l.sum().asscalar()))

可以对之前的例子实验一下:
在这里插入图片描述

(五)互相关运算和卷积运算

由于我们得到的卷积核基本上都是通过学习得到的,反向操作,所以无论我们是通过卷积运算还是互相关运算,正向操作时得到的结果都是基本一致的。

(六)特征图和感受野

特征图(fearture map):二维卷积层的输出数组
x的感受野(receptive field):影响x的前向计算的所有可能输入区域

在这里插入图片描述
输入中阴影部分的四个元素是输出中阴影部分元素的感受野。
如果考虑Y与另一个形状为2×2的核数组做互相关运算,输出单个元素z。那么,z在Y上的感受野包括Y的全部四个元素,在输入上的感受野包括其中全部9个元素。
所以更深的网络可以扩大输出数组的每个元素的感受野,从而捕捉更多的特征。

最后补充一下为什么卷积可以去噪?
以均值滤波为例,信号可以表示为g=f+n,f是实际值,n是加性高斯白噪声,均值为0,标准差为sigma。考虑一个3×3的平缓区域,真实值都是f0,那平均后g‘=f0+(n0+…+n
8)/9=f0+n’,n‘就是0均值标准差sigma/9的加性高斯白噪声,噪声就小了很多了。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值