一、sklearn转化器和预估器
转换器——特征工程的父类:
- 实例化(实例化的是一个转化器类(Transformer))
- 调用fit_transform(对于文档建立分类词频矩阵,不能同时调用)
估计器(sklearn机器学习算法的实现):
1.用于分类的估计器:
- Sklearn.neughbors k-近邻算法
- Sklearn.naive_bayes 贝叶斯
- Sklearn.linear_model.LogisticRegression 逻辑回归
- Sklearn.tree 决策树与随机森林
2.用于回归的分类器:
Sklearn.linear_model.LinearRegression 线性回归
Sklearn.linear_model.Ridge 岭回归
3.用于无监督学习的估计器
Sklearn.cluster.KMeans 聚类
步骤流程:
- 实例化一个estimator
- Estimator.fit(x_train,y_train)计算——调用完毕,模型生成
- 模型评估:
(1):直接比对真实值和预测值
Y_predict=estimator.predict(x_text)
Y_test==y_predict
(2):计算准确率
Estimator.score(x_test,y_test)
二、K近邻算法(KNN)
K Nearest Neighbor算法又叫KNN算法,这个算法是机器学习里面经典算法。
定义:如果一个样本在特征空间中的k个最相似(即特征空间中最近邻)的样本中的大多数属于某一个类别,则该样本也属于这个类别。
距离公式:俩个样本的距离可以通过如下公式计算,又叫欧氏距离
比如说a(a1,a2,a3),b(b1,b2,b3)
API:sklearn.neighbors.KNeighborsClassifier(n_neighbors=5,algorithm=’auto’)
N_neighbors:int,可选(默认=5),k_neighbors查询默认使用的邻居数
Algorithm:{‘auto’,’ball_tree’,’kd_tree’,’brute’},可选用于计算机最近邻居的算法:‘ball_tree’将会使用BallTree,’kd_tree’将使用KDTree.’auto’将尝试根据传递给fit方法的值来决定最合适的算法。
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
def knn_iris():
"""
用KNN算法对鸢尾花进行分类
:return:
"""
#(1)获取数据集
iris=load_iris()
#(2)划分数据集
x_train,x_test,y_train,y_test=train_test_split(iris.data,iris.target,random_state=6)
#(3)特征工程:标准化
transfer=StandardScaler()
x_train=transfer.fit_transform(x_train)
x_test=transfer.transform(x_test)
#(4)KNN算法评估器
estimator=KNeighborsClassifier(n_neighbors=3)
estimator.fit(x_train,y_train)
#(5)模型评估
#方法1:直接比对真实值和预测值
y_predict=estimator.predict(x_test)
print("y_predict:\n",y_predict)
print("直接比对真实值和预测值:\n",y_test==y_predict)
#方法2:计算准确率
score=estimator.score(x_test,y_test)
print("准确率:\n",score)
return None
优点:简单,易于理解,易于实现,无须训练
缺点:1.懒惰算法,对测试样本分类时的计算量大,内存开销大
2.必须指定K值,K值不当则分类精度不能保证
使用场景:小数据场景,几千~几万样本
三、模型选择与调优
交叉验证:将拿到的训练数据,分为训练和验证集。以下图为例:将数据分成四份,其中一份作为验证集,然后经过4次的测试,每次都更换不同的验证集。即得到4组模型的结果,取平均值作为最终结果,又称4折交叉验证
超参数搜索—网络搜索(Grid Search):
有很多参数是需要动手指定的(如K-近邻算法中的K值),这种叫超参数。每组超参数都采用交叉验证来进行评估。最后选出最优参数组合建立模型。
API:sklearn.model_selection.GridSearchCV(estimator,param_grid=None,cv=None)
-
- 对估计器的指定参数值进行详尽搜索
- Estimator:估计器对象
- Param_grid:估计器参数(dict){“n_neighbors”:[1,3,5]}
- Cv:指定几折交叉验证
- Fit():输入训练数据
- Secore():准确率
- 结果分析:
- 最佳参数:best_params_
- 最佳结果:best_score_
- 最佳估计器:best_estimator_
- 交叉验证结果:cv_results_
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
def knn_iris_gscv():
"""
用KNN算法对鸢尾花进行分类,添加网格搜索和交叉验证
:return:
"""
#(1)获取数据集
iris=load_iris()
#(2)划分数据集
x_train,x_test,y_train,y_test=train_test_split(iris.data,iris.target,random_state=6)
#(3)特征工程:标准化
transfer=StandardScaler()
x_train=transfer.fit_transform(x_train)
x_test=transfer.transform(x_test)
#(4)KNN算法评估器
estimator=KNeighborsClassifier()
#加入网格搜索与交叉验证
#参数准备
param_dict={"n_neighbors":[1,3,5,7,9,11]}
estimator=GridSearchCV(estimator,param_grid=param_dict,cv=10)
estimator.fit(x_train,y_train)
#(5)模型评估
#方法1:直接比对真实值和预测值
y_predict=estimator.predict(x_test)
print("y_predict:\n",y_predict)
print("直接比对真实值和预测值:\n",y_test==y_predict)
#方法2:计算准确率
score=estimator.score(x_test,y_test)
print("准确率:\n",score)
#查看参数
print("最佳参数:\n",estimator.best_params_)
print("最佳结果:\n",estimator.best_score_)
print("最佳估计器:\n",estimator.best_estimator_)
print("交叉验证结果:\n",estimator.cv_results_)
return None
四、朴素贝叶斯
概率定义:概率定义为一件事情发生的可能性P(X):取值在[0,1]
联合概率:包含多个条件,且所有条件同时成立的概率
记作:P(A,B)
条件概率:就是事件A在另外一个事件B已经发生条件下的发生概率
记作:P(A|B)
相互独立:如果P(A,B)=P(A)*P(B),则称事件A与事件B相互独立
贝叶斯公式:
公式:
P(C):每个文档类别的概率(某文档类别数/总文档数量)
P(W|C):给定类别下特征(被预测文档中出现的词)的概率
计算方法:P(F1|C)=Ni/N(训练文档中去计算)
Ni为该F1词在C类别所有文档中出现的次数
N为所属类别C下的文档所有词出现的次数和
P(W)预测文档中每个词的概率
注:w为给定文档的特征值(频数统计,预测文档提供),c为文档类别
朴素?假设特征与特征之间是相互独立的
朴素贝叶斯算法:朴素+贝叶斯
应用场景:文本分类
拉普拉斯平滑系数:
A为指定的系数一般为1,m为训练文档中统计出的特征词个数
注:加拉普莱斯都要加上
API:sklearn.naive_bayes.MultinomialNB(alpha=1.0)
朴素贝叶斯分类
Alpha:拉普拉斯平滑系数
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
def nb_news():
"""
用0朴素贝叶斯算法对新闻进行分类
:return:
"""
#(1)获取数据
fetch_20newsgroups(subset="all")
#(2)划分数据集
x_train,x_test,y_train,y_test=train_test_split(news.data,news.target)
#(3)特征工程:文本特征抽取—tfidf
transfer=TfidfVectorizer()
x_train=transfer.fit_transform(x_train)
x_test=transfer.transform(x_test)
#(4)朴素贝叶斯算法预估器流程
estimator=MultinomialNB()
estimator.fit(x_train,y_train)
#(5)模型评估
# 方法1:直接比对真实值和预测值
y_predict = estimator.predict(x_test)
print("y_predict:\n", y_predict)
print("直接比对真实值和预测值:\n", y_test == y_predict)
# 方法2:计算准确率
score = estimator.score(x_test, y_test)
print("准确率:\n", score)
return None
优点:
- 对朴素贝叶斯模型发源于古典数学理论,有稳定的分类效率
- 对缺失数据不太敏感,算法也比较简单,常用于文本分类
- 分类准确度高,速度快
缺点:
- 由于使用了样本属性独立的假设,所以如果特征属性有关联其效果不好