大模型之图表理解:StructChart: Perception, Structuring, Reasoning for Visual Chart Understanding

论文作者:Renqiu Xia,Bo Zhang,Haoyang Peng,Ning Liao,Peng Ye,Botian Shi,Junchi Yan,Yu Qiao

作者单位:Shanghai Jiao Tong University; Shanghai Artificial Intelligence Laboratory; Fudan University

论文链接:http://arxiv.org/abs/2309.11268v1

内容简介:

1)方向:图表理解

2)应用:该研究的应用领域是图表理解,包括从视觉图表中提取信息和根据提取的数据进行推理。

3)背景:图表在不同科学领域的文献中很常见,可以向读者传达丰富的信息。目前与图表相关的任务主要集中在图表感知和基于提取的数据进行推理两个方面。

4)方法:本文旨在建立一个统一且标签高效的学习范式,用于联合感知和推理任务,可以应用于不同的下游任务。首先将图表信息从流行的表格形式(具体来说是线性化的CSV)重新表述为提出的结构化三元组表示(STR),这对于减小图表感知和推理之间的任务差距非常友好,因为采用了结构化信息提取来处理图表。然后,提出了一种面向图表的结构化表示度量(SCRM),以定量评估图表感知任务的性能。为了丰富训练数据集,进一步探索了利用大型语言模型(LLM)的可能性,增强图表在图表视觉风格和统计信息方面的多样性。在各种与图表相关的任务上进行了大量实验,展示了统一的图表感知-推理范式的有效性和潜力,推动了图表理解的前沿。

5)结果:在各种与图表相关的任务上进行了广泛实验,结果表明了统一的图表感知-推理范式的有效性和潜在前景,从而推动了图表理解的前沿发展。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学术菜鸟小晨

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值