从RNN到Attention到Transformer系列-RNN介绍、手动计算验证

深度学习知识点总结

专栏链接:
深度学习知识点总结_Mr.小梅的博客-CSDN博客

本专栏主要总结深度学习中的知识点,从各大数据集比赛开始,介绍历年冠军算法;同时总结深度学习中重要的知识点,包括损失函数、优化器、各种经典算法、各种算法的优化策略Bag of Freebies (BoF)等。

本章介绍从RNN到Attention到Transformer系列-RNN


目录

3.1 RNN

3.1.1 RNN介绍

3.1.2 PyTorch中RNN的计算

3.1.3 RNN手动计算验证

3.1.4 RNN存在的问题


3.1 RNN

3.1.1 RNN介绍

        循环神经网络(Recurrent Neural Network, RNN)是一类以序列(sequence)数据为输入,在序列的演进方向进行递归(recursion)且所有节点(循环单元)按链式连接的递归神经网络(recursive neural network)。

        对循环神经网络的研究始于二十世纪80-90年代,并在二十一世纪初发展为深度学习(deep learning)算法之一,其中双向循环神经网络(Bidirectional RNN, Bi-RNN)和长短期记忆网络(Long Short-Term Memory networks,LSTM)是常见的循环神经网络。

        循环神经网络具有记忆性、参数共享并且图灵完备(Turing completeness),因此在对序列的非线性特征进行学习时具有一定优势。

        循环神经网络在自然语言处理(Natural Language Processing, NLP),例如语音识别、语言建模、机器翻译等领域有应用,也被用于各类时间序列预报。引入了卷积神经网络(Convolutional Neural Network,CNN)构筑的循环神经网络可以处理包含序列输入的计算机视觉问题。

         每个矩形都是一个向量,箭头表示函数(例如矩阵乘法)。输入向量为红色,输出向量为蓝色,绿色向量保持RNN的状态(稍后将详细介绍)。

从左到右:

  1. 没有RNN的普通处理模式,从固定大小的输入到固定大小的输出(例如图像分类)。
  2.  序列输出(例如,图像字幕拍摄图像并输出单词句子)。
  3. 序列输入(例如,情绪分析,其中给定的句子被归类为表达积极或消极的情绪)。
  4. 序列输入和序列输出(例如机器翻译:RNN用英语读取句子,然后用法语输出句子)。
  5. 同步序列输入和输出(例如,我们希望标记视频的每一帧的视频分类)。请注意,在每种情况下,长度序列上都没有预先指定的约束,因为循环变换(绿色)是固定的,可以根据需要多次应用。

RNN的基本形状:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值