PyTorch深度学习总结–13_Name_Classification
13_Name_Classification
任务介绍
根据名称,选出国家
使用模型
基础模型介绍
GRU,这里采用双向的GRU模型,
双向GRU的结构类似于下图,将RNNCell替换为GRUCell即可
输入:
两个hidden0,都是zeros形成的,输入的两个hidden需要拼接在一起
输出:
结果第一个是正向的hidden,第二个是反向的hidden
因为是双向的,所以会输出两个hidden
单词的转化为Tensor
1、先将单词中的字母转换为对应的ASCII码,这样就形成了单词转换为数字
2、然后将ASCII码的向量进行填充,形成长度相同的向量
3、再送入Embedding层,将每个ASCII码转换为向量
4、使用 pack_padded_sequence函数将embedding中的零向量去掉,实现压缩去噪
模型的最终输出转换为种类
最后将模型输出的hidden 通过一个线性层转换为城市的种类,然后进行验证。
实验代码
python语言,使用PyTorch实现
"""
-*- coding: utf-8 -*-
@Time : 2022/1/6 21:53
@Author : nanfang
@File : 13_Name_Classification.py
"""
# -------------0 Import Package-------------------------#
import math
import time
import torch
# 绘图
import matplotlib.pyplot as plt
import numpy as np
# 读取数据
import gzip
import csv
from torch.nn.utils.rnn import pack_padded_sequence
from torch.utils.data import Dataset, DataLoader
# ------------0 parameters-------------#
HIDDEN_SIZE = 100
BATCH_SIZE = 256
N_LAYER = 2
N_EPOCHS = 5
N_CHARS = 128 # 字典长度
USE_GPU = False # 不用GPU
file = '../dataset/RNN_13/'
# ---------------------1 Preparing Data and DataLoad-------------------------------#
class NameDataset(Dataset):
def __init__(self, is_train_set=True):
if is_train_set:
filename = file + 'names_train.csv.gz'
else:
filename = file + 'names_test.csv.gz'
with gzip.open(filename, 'rt')as f:
reader = csv.reader(f)
rows = list(reader)
self.names = [row[0] for row in rows] # 所有姓名
self.countries = [row[1] for row in rows] # 所有城市名
self.len = len(self.names) # 姓名的长度
self.country_list = list(sorted(set(self.countries))) # 去重,排序,列为列表
self.country_dict = self.getCountryDict() # 将城市统计为字典的形式,名字做为键,序号做为值
self.country_num = len(self.country_list) # 统计城市数量
def __getitem__(self, index):
return self.names[index], self.country_dict[self.countries[index]]
def __len__(self):
return self.len
def getCountryDict(self):
"""
初始化 self.country_dict
:return: (城市名,序号)
"""
dic = dict()
for i, v in enumerate(self.country_list, 0):
dic[v] = i
return dic
def getCountryNum(self):
"""
返回城市数量,不含重复值
:return: int
"""
return self.country_num
def idx2country(self, index):
"""
根据索引返回城市名
:param index:
:return: str
"""
return self.country_list[index]
trainset = NameDataset(is_train_set=True)
testset = NameDataset(is_train_set=False)
train_loader = DataLoader(trainset, batch_size=BATCH_SIZE, shuffle=True)
test_loader = DataLoader(testset, batch_size=BATCH_SIZE, shuffle=True)
N_COUNTRY = trainset.getCountryNum()
# ------------------------------Design Model-----------------------------------#
def create_tensor(tensor):
if USE_GPU:
device = torch.device("cuda:0")
tensor = tensor.to(device)
return tensor
class RNNClassifier(torch.nn.Module):
def __init__(self, input_size, hidden_size, output_size, n_layers=1, bidirectional=True):
super(RNNClassifier, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
self.n_layers = n_layers
self.n_directions = 2 if bidirectional else 1 # bidirectional,双向循环神经网络
self.embedding = torch.nn.Embedding(input_size, hidden_size)
self.gru = torch.nn.GRU(hidden_size, hidden_size, n_layers, bidirectional=bidirectional)
self.fc = torch.nn.Linear(hidden_size * self.n_directions, output_size)
def _init_hidden(self, batch_size):
hidden = torch.zeros(self.n_layers * self.n_directions, batch_size, self.hidden_size)
return create_tensor(hidden)
def forward(self, input, seq_lengths):
## seq_lengths 表示向量的个数,也单词的个数
input = input.t()
batch_size = input.size(1)
hidden = self._init_hidden(batch_size)
embedding = self.embedding(input)
gru_input = pack_padded_sequence(embedding, seq_lengths, enforce_sorted=False)
output, hidden = self.gru(gru_input, hidden)
if self.n_directions == 2:
hidden_cat = torch.cat([hidden[-1], hidden[-2]], dim=1)
else:
hidden_cat = hidden[-1]
fc_output = self.fc(hidden_cat)
return fc_output
# ----------------------3 Construct Loss and Optimizer------------------------------------#
classifier = RNNClassifier(N_CHARS, HIDDEN_SIZE, N_COUNTRY, N_LAYER)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(classifier.parameters(), lr=0.001)
# -----------------------------------4 Train and Test----------------------------------------------------#
def time_since(since):
s = time.time() - since
m = math.floor(s / 60)
s -= m * 60
return '%dm %ds' % (m, s)
def name2list(name):
arr = [ord(c) for c in name] # 返回对应字符的 ASCII 数值
return arr, len(arr) # 返回元组,列表本身和列表长度
def make_tensor(names, countires):
seq_and_lengths = [name2list(name) for name in names]
seqs = [seq[0] for seq in seq_and_lengths]
seq_length = torch.LongTensor([seq[1] for seq in seq_and_lengths])
seq_tensor = torch.zeros(len(seqs), seq_length.max()).long()
for idx, (seq, seq_len) in enumerate(zip(seqs, seq_length)):
seq_tensor[idx, :seq_len] = torch.LongTensor(seq)
return seq_tensor, seq_length, countires.long()
def trainModel():
total_loss = 0
for i, (names, countries) in enumerate(train_loader, 1):
inputs, seq_lengths, target = make_tensor(names, countries)
output = classifier(inputs, seq_lengths)
loss = criterion(output, target)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_loss += loss.item()
if i % 10 == 0:
print(f'[{time_since(start)}] Epoch {epoch}', end="")
print(f'[{i * len(inputs)}/{len(trainset)}] ', end='')
print(f'loss={total_loss / (i * len(inputs))}')
return total_loss
def testModel():
correct = 0
total = len(testset)
print("evaluating trained model ...")
with torch.no_grad():
for i, (names, countries) in enumerate(test_loader, 1):
inputs, seq_lengths, target = make_tensor(names, countries) # make_tensors
output = classifier(inputs, seq_lengths)
pred = output.max(dim=1, keepdim=True)[1]
correct += pred.eq(target.view_as(pred)).sum().item()
percent = '%.2f' % (100 * correct / total)
print(f'Test set: Accuracy {correct}/{total} {percent}%')
return correct / total
if __name__ == '__main__':
if USE_GPU:
device = torch.device("cuda:0")
classifier.to(device)
start = time.time()
print("Training for %d epochs..." % N_EPOCHS)
acc_list = []
for epoch in range(1, N_EPOCHS + 1):
trainModel()
acc = testModel()
acc_list.append(acc)
epoch =np.arange(1,len(acc_list)+1)
acc_list=np.array(acc_list)
plt.plot(epoch,acc_list)
plt.xlabel("Epoch")
plt.ylabel("Accuracy")
plt.grid()
plt.show()