R语言零基础基因/数据差异分析(二)


注意,本 系列 有连贯性,每一步都很详细,每一步都很重要,请耐心读完!!

结果展示

在这里插入图片描述

安装ggplot2包

如图操作



找到并勾上即可。

制作方法

关于 基因 的选定标准,即logFC和FDR,请仔细阅读代码修改即可,这里给出的标准是:
|log2(FC)| > 1 且 FDR < 0.01


#选择文件
df=read.csv(file.choose(),
	header = T #是否有标题,T表示有,F反之
	)
#加载包(反正多余不影响)
library(ggplot2)

# 注意,符号与负数之间最好有一个或多个空格,
#比如 < -1,而非 <-1否则无法运行
# FDR 边界限定和logFC下边界限定
# 注意, logFC 、 FDR 是行列头名(见R语言零基础基因/数据差异分析(一))
df[which(df$FDR < 0.01 & df$logFC > 1),'Title'] <- 'up' #上调趋势筛选
# FDR 边界限定和logFC上边界限定
df[which(df$FDR < 0.01 & (df$logFC < -1)),'Title'] <- 'dowm' #下调趋势筛选
df[!(df$Title %in% c('up', 'dowm')),'Title'] <- 'no'

img = ggplot(df, 
                aes(x = logFC, y = -log10(FDR))) +
  geom_point(aes(color = Title), size = 0) +
  scale_colour_manual(
	limits = c('up', 'dowm', 'no'),
	#下行分别对应  上调、下调、不变基因颜色
	values = c('blue', 'red', 'gray40'), 
	# 下行分别对应  上调、下调、不变基因表示文字
	labels = c('Enriched OTUs', 'Depleted OTUs', 'No diff OTUs')
) +
#下行分别对应  X、Y轴名称
  labs(x = 'log2(FC)', y = '-log10(FDR)')

img = img +
  theme(panel.grid.major = 
          element_line(color = 'gray', size = 0.2),      	  panel.background = 
          element_rect(color = 'black', fill = 'transparent')) +
     geom_vline(xintercept = c(-2, 2), color = 'gray', linetype = 2, size = 0.5) + 
  geom_hline(yintercept = -log10(0.05), color = 'gray', linetype = 2, size = 0.5) +
  theme(legend.title = element_blank(), legend.key = element_rect(fill = 'transparent'), legend.background = element_rect(fill = 'transparent'), legend.position = c(0.2, 0.9))

#运行输出图片(耐心等待)
img

输出结果:在这里插入图片描述
运行代码,此时会弹出选择文件,注意上一章我们所说的文件,选择上即可。

可以如此导出

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值