R语言零基础基因/数据差异分析(二)


注意,本 系列 有连贯性,每一步都很详细,每一步都很重要,请耐心读完!!

结果展示

在这里插入图片描述

安装ggplot2包

如图操作



找到并勾上即可。

制作方法

关于 基因 的选定标准,即logFC和FDR,请仔细阅读代码修改即可,这里给出的标准是:
|log2(FC)| > 1 且 FDR < 0.01


#选择文件
df=read.csv(file.choose(),
	header = T #是否有标题,T表示有,F反之
	)
#加载包(反正多余不影响)
library(ggplot2)

# 注意,符号与负数之间最好有一个或多个空格,
#比如 < -1,而非 <-1否则无法运行
# FDR 边界限定和logFC下边界限定
# 注意, logFC 、 FDR 是行列头名(见R语言零基础基因/数据差异分析(一))
df[which(df$FDR < 0.01 & df$logFC > 1),'Title'] <- 'up' #上调趋势筛选
# FDR 边界限定和logFC上边界限定
df[which(df$FDR < 0.01 & (df$logFC < -1)),'Title'] <- 'dowm' #下调趋势筛选
df[!(df$Title %in% c('up', 'dowm')),'Title'] <- 'no'

img = ggplot(df, 
                aes(x = logFC, y = -log10(FDR))) +
  geom_point(aes(color = Title), size = 0) +
  scale_colour_manual(
	limits = c('up', 'dowm', 'no'),
	#下行分别对应  上调、下调、不变基因颜色
	values = c('blue', 'red', 'gray40'), 
	# 下行分别对应  上调、下调、不变基因表示文字
	labels = c('Enriched OTUs', 'Depleted OTUs', 'No diff OTUs')
) +
#下行分别对应  X、Y轴名称
  labs(x = 'log2(FC)', y = '-log10(FDR)')

img = img +
  theme(panel.grid.major = 
          element_line(color = 'gray', size = 0.2),      	  panel.background = 
          element_rect(color = 'black', fill = 'transparent')) +
     geom_vline(xintercept = c(-2, 2), color = 'gray', linetype = 2, size = 0.5) + 
  geom_hline(yintercept = -log10(0.05), color = 'gray', linetype = 2, size = 0.5) +
  theme(legend.title = element_blank(), legend.key = element_rect(fill = 'transparent'), legend.background = element_rect(fill = 'transparent'), legend.position = c(0.2, 0.9))

#运行输出图片(耐心等待)
img

输出结果:在这里插入图片描述
运行代码,此时会弹出选择文件,注意上一章我们所说的文件,选择上即可。

可以如此导出

  • 6
    点赞
  • 64
    收藏
    觉得还不错? 一键收藏
  • 15
    评论
差异基因分析基因表达谱分析的一种方法,用于比较两个或多个不同条件下的基因表达水平差异。下面是R语言中进行差异基因分析代码示例: 1. 导入所需库: ``` library(DESeq2) ``` 2. 读取基因表达数据: ``` counts <- read.table("your_data_file.txt", header = T, row.names = 1) ``` 3. 创建条件信息: ``` condition <- c("condition1", "condition2", ...) # 将条件名称替换为实际的条件 ``` 4. 创建基因信息: ``` genes <- rownames(counts) ``` 5. 创建DESeq2对象: ``` dds <- DESeqDataSetFromMatrix(countData = counts, colData = data.frame(condition), design = ~ condition) ``` 6. 进行差异分析: ``` dds <- DESeq(dds) res <- results(dds) ``` 7. 对结果进行筛选: ``` alpha <- 0.05 # 设置显著性水平 sig_genes <- subset(res, padj < alpha & abs(log2FoldChange) > 1) ``` 这段代码使用了DESeq2库,首先导入库,然后读取基因表达数据。接着创建条件和基因信息,然后使用DESeqDataSetFromMatrix函数创建DESeq2对象。通过使用DESeq函数进行差异分析,得到差异分析的结果。最后,根据设定的显著性水平对结果进行筛选,得到差异表达的基因列表。 需要注意的是,差异基因分析代码可能因具体的数据和实验设计而有所不同,上述代码只是一个示例,你需要根据自己的实际情况进行相应的修改。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [R语言零基础基因/数据差异分析(一)](https://blog.csdn.net/qq_39751227/article/details/118757653)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [R语言零基础基因/数据差异分析-热图分析(四)](https://blog.csdn.net/qq_39751227/article/details/118796125)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值