R语言零基础基因/数据差异分析-热图分析(四)

结果展示

需要的数据结构

Q:这个表哪里来的?
A:他来自我的教程第一章开头介绍的,只不过把第一行改成了Symbol, a, b, c…

看过上一篇文章后,你需要自己整理好数据,这里我筛选出所需基因排序。

绘制方法

请仔细阅读代码,并修改部分你需要改的数据

library(pheatmap)

gene = read.csv(file.choose(), header = T, row.names = 1)

pheatmap(log2(gene[,
			1:6 #1:6指的是,我的数据是从第一列到第六列是需要计算的数据(B-G),Excel是从第0列开始数的,请按自己数据改
			]+1),labels_row = gene$
			Symbol #需要改,这里是文档第一列开头名,按自己改
			,main=
			"Heatmap" #标题名,可自己改
			,color = colorRampPalette(c("blue","white","red"))(256)
)

输入后回车,选择你的数据文件即可

  • 4
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 17
    评论
差异基因分析基因表达谱分析的一种方法,用于比较两个或多个不同条件下的基因表达水平差异。下面是R语言中进行差异基因分析的代码示例: 1. 导入所需库: ``` library(DESeq2) ``` 2. 读取基因表达数据: ``` counts <- read.table("your_data_file.txt", header = T, row.names = 1) ``` 3. 创建条件信息: ``` condition <- c("condition1", "condition2", ...) # 将条件名称替换为实际的条件 ``` 4. 创建基因信息: ``` genes <- rownames(counts) ``` 5. 创建DESeq2对象: ``` dds <- DESeqDataSetFromMatrix(countData = counts, colData = data.frame(condition), design = ~ condition) ``` 6. 进行差异分析: ``` dds <- DESeq(dds) res <- results(dds) ``` 7. 对结果进行筛选: ``` alpha <- 0.05 # 设置显著性水平 sig_genes <- subset(res, padj < alpha & abs(log2FoldChange) > 1) ``` 这段代码使用了DESeq2库,首先导入库,然后读取基因表达数据。接着创建条件和基因信息,然后使用DESeqDataSetFromMatrix函数创建DESeq2对象。通过使用DESeq函数进行差异分析,得到差异分析的结果。最后,根据设定的显著性水平对结果进行筛选,得到差异表达的基因列表。 需要注意的是,差异基因分析的代码可能因具体的数据和实验设计而有所不同,上述代码只是一个示例,你需要根据自己的实际情况进行相应的修改。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [R语言零基础基因/数据差异分析(一)](https://blog.csdn.net/qq_39751227/article/details/118757653)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* [R语言零基础基因/数据差异分析-热图分析)](https://blog.csdn.net/qq_39751227/article/details/118796125)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值