Projective geometry (投影几何)(二) 之 projective transformations (投影变换)


Projective transformations)

一个读者的感悟。
所有的知识点都是来源于书Multiple View of Geometry in Computer Vision
这一篇中很多概念都在上一篇2D投影平面中介绍。注:在没有上一篇基础的前提下这一篇难以理解。
这一篇涉及到投影变换的基本概念。
依然,数学真是很奇妙的东西。

Basic definitions

Definition 2.9. A projectivity (also called a collineation) is an invertible mapping h h h from P 2 \mathbb{P}^2 P2 (projective plane) to itself such that three points x 1 x_1 x1, x 2 x_2 x2, x 3 x_3 x3 lines on the same line if and only if h ( x 1 ) h(x_1) h(x1), h ( x 2 ) h(x_2) h(x2), h ( x 3 ) h(x_3) h(x3) do.

Theorem 2.10. A mapping h h h: P 2 → P 2 \mathbb{P}^2 \to \mathbb{P}^2 P2P2 is a projecticity if and only if there exists a non-singular 3 × \times × 3 matrix H H H such that for any point in P 2 \mathbb{P}^2 P2 relrese ted h a vector x x x it is true that h ( x ) = H x h(x) = Hx h(x)=Hx

Note that the points mentioned above is homogeous coordinates. The theorem indicates that the projectivity is a linear transformation and the linear mapping is projectivity

Proof:
x 1 x_1 x1, x 2 x_2 x2, x 3 x_3 x3 lie on the line l l l. Thus l T x i = 0 l^Tx_i =0 lTxi=0 for i = 1 , 2 , 3 i = 1,2,3 i=1,2,3. Given H H H is a non-singular 3 × \times × 3 matrix. We can get l T H − 1 H x i = 0 l^TH^{-1}Hx_i =0 lTH1Hxi=0. Thus H x i Hx_i Hxi all lie on the line l ′ = H − T l l{'} = H^{-T}l l=HTl.

Definition 2.11. Projective transformation A planar projective transformation is a linear transformation on homogeneous 3-vectors represented by a non-sigular 3 × \times × 3 matrix:
( x 1 ′ x 2 ′ x 3 ′ ) = ( h 11 h 12 h 13 h 21 h 22 h 23 h 31 h 32 h 33 ) = ( x 1 x 2 x 3 ) \begin{pmatrix} x_1{'} \\ x_2{'} \\x_3{'} \end{pmatrix} = \begin{pmatrix} h_{11} &h_{12} &h_{13} \\h_{21} &h_{22} &h_{23} \\ h_{31} &h_{32} &h_{33} \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\x_3 \end{pmatrix} x1x2x3=h11h21h31h12h22h32h13h23h33=x1x2x3, more briefly, x ′ = H x x^{'} = Hx x=Hx.

Note that the equation won’t change when multiply any non-zero scala (非零常数) to H H H.
The H H H has 8 ratios so has 8 degrees of freedom.
In the ray model in Figure 2.1 (2D投影平面), any projective transformation is linear transformation of R 3 \mathbb{R^3} R3

Example 2.12. Removing the projective distortion from a perspective image of a plane.

(需补充图片2.4)

Let original image point be ( x , y ) (x, y) (x,y) and the point at image plane is ( x ′ , y ′ ) (x{'}, y{'}) (x,y) in inhomogeous system. Thus we can get:
x ′ = x 1 ′ x 3 ′ = h 11 x + h 12 y + h 13 h 31 x + h 32 y + h 33 x{'} = \frac{x_1{'}}{x_3{'}} = \frac{h_{11}x + h_{12}y + h_{13}}{h_{31}x + h_{32}y + h_{33}} x=x3x1=h31x+h32y+h33h11x+h12y+h13,
y ′ = x 2 ′ x 3 ′ = h 21 x + h 22 y + h 23 h 31 x + h 32 y + h 33 y{'} = \frac{x_2{'}}{x_3{'}} = \frac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}} y=x3x2=h31x+h32y+h33h21x+h22y+h23.

Thus we can get two equations at each point for the elements of H H H, which can be written as:

x ′ ( h 31 x + h 32 y + h 33 ) = h 11 x + h 12 y + h 13 x{'}(h_{31}x + h_{32}y + h_{33}) = h_{11}x + h_{12}y + h_{13} x(h31x+h32y+h33)=h11x+h12y+h13,
y ′ ( h 31 x + h 32 y + h 33 ) = h 21 x + h 22 y + h 23 y{'}(h_{31}x + h_{32}y + h_{33} )=h_{21}x + h_{22}y + h_{23} y(h31x+h32y+h33)=h21x+h22y+h23,

where the equations are linear for the element of H. For 4 points of image, we can get 8 equations, which sufficient to solve H H H. Note that the 4 points can not be collinear. The example is shown as Figure 2.4.

Properties:

  1. It doesn’t need knowledge of camera (parameters or position).
  2. 4 points are not necessary (describedin section 2.7(之后的博客中会提及到)).

(需要补充图片2.5)

A variety of projective transformations are shown in the Figure 2.5.

Transformations of lines and conics

Transformations of lines

From the Theorem 2.10 and 2.11, after projective transformation, the points x i x_i xi belongs to line l l l can be written as x i ′ = H x i x_i{'} = Hx_i xi=Hxi line on the line: l ′ = H − T l l{'} = H^{-T}l l=HTl. Or l ′ T = l T H − 1 l'^{T} = l^{T}H^{-1} lT=lTH1. Thus we can say that points transformation according to H H H while lines transformation according to H − 1 H^{-1} H1.
We can say points transform contravariantly and lines transform covariantly.

Transformations of conics

Given x ′ = H x x{'} = Hx x=Hx, x T C x = x ′ T [ H − 1 ] T C H − 1 x ′ = x ′ T H − T C H − 1 x ′ x^TCx = x'^{T}[H^{-1}]^TCH^{-1}x{'} = x^{'T}H^{-T}CH^{-1}x^{'} xTCx=xT[H1]TCH1x=xTHTCH1x, which is quadratic form x ′ T C ′ x ′ x'^{T}C'x{'} xTCx, where C ′ = H − T C H − 1 C' = H^{-T}CH^{-1} C=HTCH1.

Result 2.13. Under a point transformation x ′ = H x x{'} = Hx x=Hx, a conic C C C transforms to C ′ = H − T C H − 1 C' = H^{-T}CH^{-1} C=HTCH1.

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
投影几何学是一门研究几何图形如何与平面或空间中的投影相关联的数学学科。它的基本思想是通过把空间中的点映射到较低维度的投影平面上,来研究几何图形的性质。 投影几何学的一个重要概念是投影,即将空间中的点映射到一个低维度的平面上。可以使用各种投影方式,如平行投影、透视投影等。在平行投影中,所有平行的线段都会被映射为平行线段,而在透视投影中,线段会按照一定的角度收敛到一个点。 投影几何学的另一个重要概念是射影空间。射影空间是基于投影的概念建立起来的一种数学结构。它允许我们在一个维度较低的空间中进行几何运算,而不会丧失原始空间中的性质。例如,在射影平面中,平行的线段会相交于一个点。射影空间的引入使得我们可以在一个更抽象的层面上研究几何性质。 投影几何学在许多领域中有广泛的应用,包括计算机图形学、计算机视觉、物理学等。在计算机图形学中,投影几何学被用来模拟光线在摄像机和屏幕之间的传播路径,以实现逼真的图像渲染。在计算机视觉中,投影几何学被用来进行3D物体的识别和重建。在物理学中,投影几何学被用来研究光的传播和反射。 总之,投影几何学是一门研究几何图形与投影之间关系的数学学科。它的应用范围广泛,可以应用于计算机图形学、计算机视觉和物理学等领域。通过投影几何学,我们可以更深入地理解和分析几何图形及其性质。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值