Wasserstein距离

前置知识:Computational optimal transport

Kantorovich’s optimal transport problem

L C ( a , b ) =  def.  min ⁡ P ∈ U ( a , b ) ⟨ C , P ⟩ \mathrm{L}_{\mathbf{C}}(\mathbf{a}, \mathbf{b}) \stackrel{\text { def. }}{=} \min _{\mathbf{P} \in \mathbf{U}(\mathbf{a}, \mathbf{b})}\langle\mathbf{C}, \mathbf{P}\rangle LC(a,b)= def. PU(a,b)minC,P

U ( a , b ) =  def.  { P ∈ R + n × m : P 1 m = a  and  P T 1 n = b } \mathbf{U}(\mathbf{a}, \mathbf{b}) \stackrel{\text { def. }}{=}\left\{\mathbf{P} \in \mathbb{R}_{+}^{n \times m}: \mathbf{P} \mathbf{1}_m=\mathbf{a} \quad \text { and } \quad \mathbf{P}^{\mathrm{T}} \mathbf{1}_n=\mathbf{b}\right\} U(a,b)= def. {PR+n×m:P1m=a and PT1n=b}

对偶

L C ( a , b ) = max ⁡ ( f , g ) ∈ R ( a , b ) ⟨ f , a ⟩ + ⟨ g , b ⟩ \mathrm{L}_{\mathbf{C}}(\mathbf{a}, \mathbf{b})=\max _{(\mathbf{f}, \mathbf{g}) \in \mathbf{R}(\mathbf{a}, \mathbf{b})}\langle\mathbf{f}, \mathbf{a}\rangle+\langle\mathbf{g}, \mathbf{b}\rangle LC(a,b)=(f,g)R(a,b)maxf,a+g,b

R ( a , b ) =  def.  { ( f , g ) ∈ R n × R m : f ⊕ g ≤ C } \mathbf{R}(\mathbf{a}, \mathbf{b}) \stackrel{\text { def. }}{=}\left\{(\mathbf{f}, \mathbf{g}) \in \mathbb{R}^n \times \mathbb{R}^m: \mathbf{f} \oplus \mathbf{g} \leq \mathbf{C}\right\} R(a,b)= def. {(f,g)Rn×Rm:fgC}

Wasserstein距离

考虑 n = m , p ≥ 1 n=m, p\ge 1 n=m,p1
C = D p ∈ R n × n \mathbf{C} = \mathbf{D}^p\in\mathbb{R}^{n\times n} C=DpRn×n
其中 D \mathbf{D} D是距离,即满足
(1) D ∈ R + n × n \mathbf{D}\in\mathbb{R}_+^{n\times n} DR+n×n是对称的
(2) D i , j = 0 \mathbf{D}_{i,j}=0 Di,j=0当且仅当 i = j i=j i=j
(3) ∀ i , j , k , D i , k ≤ D i , j + D j , k \forall i,j,k, \mathbf{D}_{i,k}\le \mathbf{D}_{i,j}+\mathbf{D}_{j,k} i,j,k,Di,kDi,j+Dj,k


W p ( a , b ) =  def.  L D p ( a , b ) 1 / p \mathrm{W}_p(\mathbf{a}, \mathbf{b}) \stackrel{\text { def. }}{=} \mathrm{L}_{\mathbf{D}^p}(\mathbf{a}, \mathbf{b})^{1 / p} Wp(a,b)= def. LDp(a,b)1/p
称为p-Wasserstein distance,
可以证明p-Wasserstein distance也是距离

证明:
再说

对偶

W p ( a , b ) = max ⁡ ( f , g ) ∈ R ( a , b ) ⟨ f , a ⟩ + ⟨ g , b ⟩ \mathrm{W}_p(\mathbf{a}, \mathbf{b})=\max _{(\mathbf{f}, \mathbf{g}) \in \mathbf{R}(\mathbf{a}, \mathbf{b})}\langle\mathbf{f}, \mathbf{a}\rangle+\langle\mathbf{g}, \mathbf{b}\rangle Wp(a,b)=(f,g)R(a,b)maxf,a+g,b
R ( a , b ) =  def.  { ( f , g ) ∈ R n × R n : f ⊕ g ≤ D p } \mathbf{R}(\mathbf{a}, \mathbf{b}) \stackrel{\text { def. }}{=}\left\{(\mathbf{f}, \mathbf{g}) \in \mathbb{R}^n \times \mathbb{R}^n: \mathbf{f} \oplus \mathbf{g} \leq \mathbf{D}^p\right\} R(a,b)= def. {(f,g)Rn×Rn:fgDp}

f ⊕ g ≤ D p ⇒ f i + g i ≤ 0 \mathbf{f} \oplus \mathbf{g} \leq \mathbf{D}^p\Rightarrow f_i +g_i\le 0 fgDpfi+gi0
因此
⟨ f , a ⟩ + ⟨ g , b ⟩ = ∑ i = 1 n ( f i a i + g i b i ) ≤ ∑ i = 1 n ( f i a i − f i b i ) \langle\mathbf{f}, \mathbf{a}\rangle+\langle\mathbf{g}, \mathbf{b}\rangle=\sum_{i=1}^{n}\left(f_ia_i + g_ib_i\right)\le \sum_{i=1}^n\left(f_ia_i -f_i b_i\right) f,a+g,b=i=1n(fiai+gibi)i=1n(fiaifibi)

搬土距离

Earth Mover’s Distance
考虑有两个概率分布 P r , P θ P_r,P_\theta Pr,Pθ

EMD ⁡ ( P r , P θ ) = inf ⁡ γ ∈ Π ∑ x , y ∥ x − y ∥ γ ( x , y ) = inf ⁡ γ ∈ Π E ( x , y ) ∼ γ ∥ x − y ∥ \operatorname{EMD}\left(P_r, P_\theta\right)=\inf _{\gamma \in \Pi} \sum_{x, y}\|x-y\| \gamma(x, y)=\inf _{\gamma \in \Pi} \mathbb{E}_{(x, y) \sim \gamma}\|x-y\| EMD(Pr,Pθ)=γΠinfx,yxyγ(x,y)=γΠinfE(x,y)γxy
考虑对偶
EMD ⁡ ( P r , P θ ) = sup ⁡ ∥ f ∥ L ≤ 1 E x ∼ P r f ( x ) − E x ∼ P θ f ( x ) . \operatorname{EMD}\left(P_r, P_\theta\right)=\sup _{\|f\|_{L \leq 1}} \mathbb{E}_{x \sim P_r} f(x)-\mathbb{E}_{x \sim P_\theta} f(x) . EMD(Pr,Pθ)=fL1supExPrf(x)ExPθf(x).
∥ f ∥ L ≤ 1 \|f\|_{L \leq 1} fL1表示Lipschitz连续,其中Lipschitz常数为 L L L
∣ f ( x ) − f ( y ) ∣ ≤ L ∥ x − y ∥ \left|f\left(\mathbf{x}\right)-f\left(\mathbf{y}\right)\right|\le L\|\mathbf{x}-\mathbf{y}\| f(x)f(y)Lxy

参考:
从Wasserstein距离、对偶理论到WGAN
Wasserstein GAN and the Kantorovich-Rubinstein Duality

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Nightmare004

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值