1 题目描述
2 解题思路
2.1 使用两数之和函数
这种做法目前超时了,如果大家有想到合适的减时间/剪枝的方法,欢迎私信or评论~
两数之和的方法见文巾解题 1. 两数之和_刘文巾的博客-CSDN博客
我的思路是这样的,先固定一个数x,然后另外两个数就需要和为-x,那么两数之和为-x就可以调用之前的函数。
不过唯一不同的是,之前的“两数之和”,只要求出一组解就可以了,但我们这里需要的是全部解。
所以我对“两数之和”中的函数进行了一点改造。当我们找到满足条件的两个数时,我不直接返回。而是将这组解放到一个list中。等所有的元素都遍历完了,所有满足条件的解都放到这个list中了。那么把这个list返回,就是和等于这个-x的所有数对了。
然后我们对每一个数对,将x拼接进去。得到一组满足条件的“三数组合”。
但这时候“三数组合”会有冗余的。我们需要去重。我现在的思路是,将“三数组合”排序,然后转换成元组tuple,之后使用set(list不能应用于set上,tuple可以)
class Solution:
def twoSum(self, nums: List[int], target: int) -> List[int]:
ret=[]
for i in range(len(nums)):
x=nums[i]
y=target-x
if(y in nums):
if(i==nums.index(y)):
continue
else:
ret.append([x,y])
return(ret)
#文巾解题1 两数之和代码 稍作改动
def threeSum(self, nums: List[int]) -> List[List[int]]:
ret=[]
l=len(nums)
s=set(nums) #不同的“和”
for i in s:
tmp=self.twoSum(nums[0:nums.index(i)]+nums[nums.index(i)+1:l],-i)
#找所有满足条件的“两数组合”
if(tmp==[]):
continue
else:
for j in tmp:
j.extend([i])
j.sort()
ret.append(tuple(j))
#所有满足条件的“三数组合”
return (list(set(ret)))
#结果去重
2.2 排序 + 双指针(leetcode方法)
题目中要求找到所有不重复且和为 0 的三元组,这个不重复的要求使得我们无法简单地使用三重循环枚举所有的三元组。
这是因为在最坏的情况下,数组中的元素全部为 0。任意一个三元组的和都为 0。如果我们直接使用三重循环枚举三元组,会得到 O(N^3)个满足题目要求的三元组(其中 N 是数组的长度)时间复杂度至少为 O(N^3)。在这之后,我们还需要使用哈希表进行去重操作,得到不包含重复三元组的最终答案,又消耗了大量的空间。这个做法的时间复杂度和空间复杂度都很高,因此我们要换一种思路来考虑这个问题。
不重复的本质是什么?我们保持三重循环的大框架不变,只需要保证:
第二重循环枚举到的元素不小于当前第一重循环枚举到的元素;
第三重循环枚举到的元素不小于当前第二重循环枚举到的元素。
也就是说,我们枚举的三元组 (a, b, c)满足 a≤b≤c,保证了只有 (a, b, c) 这个顺序会被枚举到,而 (b, a, c)、(c, b, a)等等这些不会,这样就减少了重复。
要实现这一点,我们可以将数组中的元素从小到大进行排序,随后使用普通的三重循环就可以满足上面的要求。
同时,对于每一重循环而言,相邻两次枚举的元素不能相同,否则也会造成重复。
举个例子,如果排完序的数组为[0, 1, 2, 2, 2, 3]。
我们使用三重循环枚举到的第一个三元组为 (0, 1, 2),如果第三重循环继续枚举下一个元素,那么仍然是三元组 (0, 1, 2),产生了重复。
因此我们需要将第三重循环「跳到」下一个不相同的元素,即数组中的最后一个元素 3,枚举三元组 (0, 1, 3)。
下面给出了改进的方法的伪代码实现:
nums.sort()
for first = 0 .. n-1
// 只有和上一次枚举的元素不相同,我们才会进行枚举
if first == 0 or nums[first] != nums[first-1] then
for second = first+1 .. n-1
if second == first+1 or nums[second] != nums[second-1] then
for third = second+1 .. n-1
if third == second+1 or nums[third] != nums[third-1] then
// 判断是否有 a+b+c==0
check(first, second, third)
这种方法的时间复杂度仍然为 O(N^3),毕竟我们还是没有跳出三重循环的大框架。
然而它是很容易继续优化的,可以发现,如果我们固定了前两重循环枚举到的元素 a 和 b,那么只有唯一的 c 满足 a+b+c=0。当第二重循环往后枚举一个元素 b'时,由于 b' > b,那么满a+b'+c'=0的 c' 一定有 c' < c,即 c'在数组中一定出现在 c 的左侧。也就是说,我们可以从小到大枚举 b,同时从大到小枚举 c,即第二重循环和第三重循环实际上是并列的关系。(那么前面为代码中c右侧的遍历部分就被剪枝剪掉了)
有了这样的发现,我们就可以保持第二重循环不变,而将第三重循环变成一个从数组最右端开始向左移动的指针,从而得到下面的伪代码(加粗的部分为两者不同之处):
nums.sort()
for first = 0 .. n-1// 只有和上一次枚举的元素不相同,我们才会进行枚举
if first == 0 or nums[first] != nums[first-1] then
// 第三重循环对应的指针
third = n-1
for second = first+1 .. n-1
if second == first+1 or nums[second] != nums[second-1] then
// 向左移动指针,直到 a+b+c 不大于 0
while nums[first]+nums[second]+nums[third] > 0
third = third-1
// 判断是否有 a+b+c==0
check(first, second, third)
这个方法就是我们常说的「双指针」。
当我们需要枚举数组中的两个元素时,如果我们发现随着第一个元素的递增,第二个元素是递减的,那么就可以使用双指针的方法,将枚举的时间复杂度从 O(N^2)减少至 O(N)。
为什么时间复杂度是 O(N) 呢?这是因为在枚举的过程每一步中,「左指针」会向右移动一个位置(也就是题目中的 bb),而「右指针」会向左移动若干个位置,这个与数组的元素有关,但我们知道它一共会移动的位置数为O(N)。
均摊下来,每次也向左移动一个位置,因此时间复杂度为 O(N)。
class Solution:
def threeSum(self, nums: List[int]) -> List[List[int]]:
n = len(nums)
nums.sort()
#对nums进行排序
ans = list()
# 枚举 a
for first in range(n):
# 需要和上一次枚举的数不相同
if first > 0 and nums[first] == nums[first - 1]:
continue
#third 对应的指针初始指向数组的最右端
third = n - 1
target = -nums[first]
#second和third指针指向的元素和为first指针指向的元素的相反数
# 枚举 b
for second in range(first + 1, n):
# 需要和上一次枚举的数不相同
if second > first + 1 and nums[second] == nums[second - 1]:
continue
# c向左移动的时候,需要保证 b 的指针在 c 的指针的左侧
while second < third and nums[second] + nums[third] > target:
third -= 1
# 如果指针重合,随着 b 后续的增加
# 就不会有满足 a+b+c=0 并且 b<c 的 c 了,可以退出循环
if second == third:
break
if nums[second] + nums[third] == target:
ans.append([nums[first], nums[second], nums[third]])
return ans