1 图的定义
上图中的邻接矩阵分别为
2 图的度
无向图的度就是,每个点和几个其他的点相连接,那么这个点的度就是几。
以上左图为例,点1的度为2,点4的度为3
有向图分为出度和入度,就是射出去和射进来的射线的数量
以上右图为例,点1的出度和入度都是1,点4的出度是2,入度是1
3 图的连通性
3.1 无向图的连通性
对于一个无向图,如果图中任意一个节点i可以通过一些边到达节点j,那么这个无向图具有连通性,我们称这个无向图为连通图。
换句话说,这个无向图没有孤立的节点。
3.1.1 连通分量
无向图G的一个极大连通子图被称为G的一个连通分量(或者叫连通分支)。
连通图只有一个连通分量(即自身)
非连通的无向图可能有多个连通分量
3.2 有向图的连通性
3.2.1 强连通性
给定图G=(V,E),给定图G中任意两个节点u和v,如果结点u和v相互可达(也就是至少存在一条路径从u到v,也存在一条路径从v到u),那么这个有向图G具有强连通性,是强连通图。
3.2.2 弱连通性
如果至少有一对节点不满足互相联通(即这个有向图不具备强连通性),但是去掉边的方向后,从无向图的角度看,又是连通图,这样的有向图是弱连通图。
比如上一张图,我把3->2的射线改成2->3的射线,那么此时的有向图是弱连通图
4 图的直径
两两节点之间最短路径的最大值称之为直径
以这张图为例,图的直径为2(1->3)
5 度中心性
度中心性=
以这张图为例,点1的图中心性为2/(4-1)=2/3;点4 的图中心性为3/(4-1)=1
6 特征向量中心性
对于图的邻接矩阵A,我们对A求特征值和特征向量
最大特征值对应的特征向量,每一个维度对应这个点的特征向量中心性
特征向量取个反方向也没有影响。
7 中介中心性
以王者荣耀魏势力的人物关系图为例
这个分式怎么看呢?我们以曹操的中介中心性为例:
我们先看分母:任意两个节点,两两之间有一条最短路径(那么就是1)。除了曹操之外,还有五个点,五个点之间两两相连 那么就还有5*4=20条最短路径.
然后我们看分子:
1)第一个括号:(0+1+1+0.5)
蔡文姬-甄姬,没有经过曹操,故为0
蔡文姬-司马懿,经过曹操,且只有一条路径,故为1
蔡文姬-夏侯惇,经过曹操,且只有一条路径,故为1
蔡文姬-典韦,有两条最短路径,其中一条经过曹操,故为0.5(占比)
2)第二个括号:(0+0+1+1)
甄姬-夏侯惇:经过曹操,且只有一条路径,故为1
甄姬-司马懿:经过曹操,且只有一条路径,故为1
甄姬-典韦 :没有经过曹操,故为0
甄姬-蔡文姬:没有经过曹操,故为0
3)第三个括号:(0+1+1+0.5)
典韦-夏侯惇:经过曹操,且只有一条路径,故为1
典韦-司马懿:经过曹操,且只有一条路径,故为1
典韦-甄姬 :没有经过曹操,故为0
典韦-蔡文姬:有两条最短路径,其中一条经过曹操,故为0.5(占比)
4)第四个括号:(1+1+1+1)
司马懿-夏侯惇:经过曹操,且只有一条路径,故为1
司马懿-蔡文姬:经过曹操,且只有一条路径,故为1
司马懿-典韦:经过曹操,且只有一条路径,故为1
司马懿-甄姬:经过曹操,且只有一条路径,故为1
5)第五个括号:(1+1+1+1)
夏侯惇-司马懿:经过曹操,且只有一条路径,故为1
夏侯惇-典韦:经过曹操,且只有一条路径,故为1
夏侯惇-蔡文姬:经过曹操,且只有一条路径,故为1
夏侯惇-甄姬:经过曹操,且只有一条路径,故为1
8 连接中心性
还是以刚才那个图为例:
9 拉普拉斯矩阵
拉普拉斯矩阵(Laplacian matrix)),也称为基尔霍夫矩阵, 是表示图的一种矩阵。给定一个有n个顶点的图,其拉普拉斯矩阵被定义为:L=D−W 其中D为图的度矩阵,W为图的邻接矩阵。
以下图为例:
邻接矩阵 | ![]() |
度矩阵 | ![]() |
拉普拉斯矩阵 | ![]() |
9.1常见的几种拉普拉斯矩阵
combinatorial Laplacian/ Vanilla Laplacian | L=D-A |
Symmetric normalized Laplacian | (很多GCN的论文中,使用的就是这种拉普拉斯矩阵) |
Random walk normalized Laplacian |
9.2 拉普拉斯矩阵的性质
拉普拉斯矩阵是半正定对称矩阵
而实对称矩阵的性质有:
- 一定有n个线性无关的特征向量
- 这n个特征向量总是可以化成两两相互正交的正交矩阵
半正定矩阵的性质为:特征值一定非负