机器学习笔记 temperature+Softmax

1 介绍

带temperature的Softmax,用公式描述,可以表示为

S_\tau(x,y)=[\frac{exp(a_1/\tau)}{\sum exp(a_i/\tau)},\frac{exp(a_2/\tau)}{\sum exp(a_i/\tau)},\cdots,\frac{exp(a_i/\tau)}{\sum exp(a_i/\tau)}]

直观感受一下

import numpy as np

def exp_tem(x,tau):
    return np.exp(x/tau)/sum(np.exp(x/tau))

print(exp_tem(np.array([1,2,3]),2))
#[0.18632372 0.30719589 0.50648039]
print(exp_tem(np.array([1,2,3]),1))
#[0.09003057 0.24472847 0.66524096]
print(exp_tem(np.array([1,2,3]),0.5))
#[0.01587624 0.11731043 0.86681333]

不难发现,t越大,各个类之间的差距越小,结果越“平滑”;t越小,各个类之间的差距越大,结果越“尖锐”。

2 temperature的作用

个人觉得可以在一定程度上类比成强化学习的ε-greedy,如果temperature设置得比较大,那么各个类之间的差别不大,就有很大概率选到不同的类,获得了一定的exploration空间;如果temperature设置得比较小,那么概率最大的类 得到的结果数值会“鹤立鸡群”,那么基本上选择的就是这个类了。

所以我们可以设置 temperature \tau=\frac{c}{1+logT} ,随着模型的更新,temperature越来越小,也就逐渐从exploration转向exploitation了。

参考文献:深度学习中的temperature parameter是什么 - 知乎 (zhihu.com)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值