1 介绍
带temperature的Softmax,用公式描述,可以表示为
直观感受一下
import numpy as np
def exp_tem(x,tau):
return np.exp(x/tau)/sum(np.exp(x/tau))
print(exp_tem(np.array([1,2,3]),2))
#[0.18632372 0.30719589 0.50648039]
print(exp_tem(np.array([1,2,3]),1))
#[0.09003057 0.24472847 0.66524096]
print(exp_tem(np.array([1,2,3]),0.5))
#[0.01587624 0.11731043 0.86681333]
不难发现,t越大,各个类之间的差距越小,结果越“平滑”;t越小,各个类之间的差距越大,结果越“尖锐”。
2 temperature的作用
个人觉得可以在一定程度上类比成强化学习的ε-greedy,如果temperature设置得比较大,那么各个类之间的差别不大,就有很大概率选到不同的类,获得了一定的exploration空间;如果temperature设置得比较小,那么概率最大的类 得到的结果数值会“鹤立鸡群”,那么基本上选择的就是这个类了。
所以我们可以设置 temperature ,随着模型的更新,temperature越来越小,也就逐渐从exploration转向exploitation了。