论文笔记:Large Language Models as Urban Residents:An LLM Agent Framework for Personal Mobility Generati

1 intro

使用LMM生成活动轨迹的开创性工作

1.1 生成活动轨迹的意义

  • 理解活动模式(mobility pattern)——>能够灵活模拟城市移动性
  • 尽管个体活动轨迹数据由于通信技术的进步而丰富,但其实际使用往往受到隐私顾虑的限制
    • ——>生成的数据可以提供一种可行的替代方案,提供了效用和隐私之间的平衡

1.2 之前生成活动轨迹的方法的不足

  • 之前有很多数据驱动的基于学习的方法
    • 生成的数据仅从数据分布的角度而非语义上模仿真实世界的数据,使它们在模拟或解释新颖或未预见到的具有显著不同分布的场景(例如,大流行疾病)的活动中效果较差

1.3 本文思路

  • 使用大模型生成活动轨迹

这个图没有说清楚,我个人的感觉是,LLM得到plan和reason的部分,然后根据plan里面的semantic activity(POI),对应到location coordinate上

1.3.1  大模型相比于之前模型的优势
  • 语义可解释性
    • 与之前主要依赖于结构化数据(基于GPS坐标的轨迹数据)不同,LLMs在解释语义数据(例如,活动轨迹数据)方面展现出了专长
      • ——>可以将多样化数据源纳入生成过程
      • ——>增强了模型理解和与复杂、真实世界场景以更细腻和有效的方式互动的能力
  • 模型通用性
    • 之前的模型在未见场景下的生成能力有限
    • LLMs在处理未见任务上显示出了显著的通用性,尤其是基于可用信息进行推理和决策的能力
1.3.2 挑战与解决方法
  • RQ 1: LLM如何有效地与关于日常个人活动的富语义数据对齐?
  • RQ 2: 使用LLM实现可靠且有意义的活动生成的有效策略是什么?
  • <
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值