1 intro
使用LMM生成活动轨迹的开创性工作
1.1 生成活动轨迹的意义
- 理解活动模式(mobility pattern)——>能够灵活模拟城市移动性
- 尽管个体活动轨迹数据由于通信技术的进步而丰富,但其实际使用往往受到隐私顾虑的限制
- ——>生成的数据可以提供一种可行的替代方案,提供了效用和隐私之间的平衡
1.2 之前生成活动轨迹的方法的不足
- 之前有很多数据驱动的基于学习的方法
- 生成的数据仅从数据分布的角度而非语义上模仿真实世界的数据,使它们在模拟或解释新颖或未预见到的具有显著不同分布的场景(例如,大流行疾病)的活动中效果较差
1.3 本文思路
- 使用大模型生成活动轨迹
这个图没有说清楚,我个人的感觉是,LLM得到plan和reason的部分,然后根据plan里面的semantic activity(POI),对应到location coordinate上
1.3.1 大模型相比于之前模型的优势
- 语义可解释性
- 与之前主要依赖于结构化数据(基于GPS坐标的轨迹数据)不同,LLMs在解释语义数据(例如,活动轨迹数据)方面展现出了专长
- ——>可以将多样化数据源纳入生成过程
- ——>增强了模型理解和与复杂、真实世界场景以更细腻和有效的方式互动的能力
- 与之前主要依赖于结构化数据(基于GPS坐标的轨迹数据)不同,LLMs在解释语义数据(例如,活动轨迹数据)方面展现出了专长
- 模型通用性
- 之前的模型在未见场景下的生成能力有限
- LLMs在处理未见任务上显示出了显著的通用性,尤其是基于可用信息进行推理和决策的能力
1.3.2 挑战与解决方法
- RQ 1: LLM如何有效地与关于日常个人活动的富语义数据对齐?
- RQ 2: 使用LLM实现可靠且有意义的活动生成的有效策略是什么? <