iclr 2024 reviewer 打分 6668
- 大型预训练语言模型(PLMs)倾向于展现社会偏见,需要检测和缓解之
- 大多数检测PLMs中社会偏见的方法依赖于基于提示或探测的技术,将PLMs视为黑箱
- 这些方法通常从设计提示模板或探测方案开始,以引出PLMs的偏见输出
- 随后,他们通过计算偏见输出的比例来衡量模型的公平性
- 这种方法的有效性严重依赖于所设计的提示模板或探测方案的质量
- 此外,许多先前的去偏方法都集中于构建反刻板印象数据集,然后重新训练PLM或进行微调
- 这一系列去偏方法虽然有效,但数据构建和模型重新训练的成本很高。
- 此外,如果进行微调,还面临灾难性遗忘的挑战
- 大多数检测PLMs中社会偏见的方法依赖于基于提示或探测的技术,将PLMs视为黑箱
- ——>论文引入“社会偏见神经元”的概念来探讨和缓解PLMs中的社会偏见
- 旨在回答两个问题:
- (1)如何精确识别PLMs中的社会偏见神经元?
- ——>引入一种可解释技术&#
- (1)如何精确识别PLMs中的社会偏见神经元?
- 旨在回答两个问题: