论文略读:The Devil is in the Neurons: Interpreting and Mitigating Social Biases in Language Models

iclr 2024 reviewer 打分 6668

  • 大型预训练语言模型(PLMs)倾向于展现社会偏见,需要检测和缓解之
    • 大多数检测PLMs中社会偏见的方法依赖于基于提示或探测的技术,将PLMs视为黑箱
      • 这些方法通常从设计提示模板或探测方案开始,以引出PLMs的偏见输出
      • 随后,他们通过计算偏见输出的比例来衡量模型的公平性
      • 这种方法的有效性严重依赖于所设计的提示模板或探测方案的质量
    • 此外,许多先前的去偏方法都集中于构建反刻板印象数据集,然后重新训练PLM或进行微调
      • 这一系列去偏方法虽然有效,但数据构建和模型重新训练的成本很高
      • 此外,如果进行微调,还面临灾难性遗忘的挑战
  • ——>论文引入“社会偏见神经元”的概念来探讨和缓解PLMs中的社会偏见
    • 旨在回答两个问题:
      • (1)如何精确识别PLMs中的社会偏见神经元?
        • ——>引入一种可解释技术&#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值