论文笔记:Pre-training Context and Time Aware Location Embeddings from Spatial-TemporalTrajectories for U

AAAI 2021

1 intro

1.1 背景

  • 利用无监督方法或自监督目标预训练地点嵌入可以融合更通用以及更容易解释的关于地点的信息
    • 轨迹中的地点嵌入类似于自然语言处理中的词嵌入。
      • 但是,轨迹包含了一个文本中不具备的时间维度的信息
        • 访问频率&访问时长
        • 时间也潜在反映了一个地点的功能
          • 对于不同类型的地点,用户的访问时间分布完全不同
      • 多功能地点在现实世界中是一个常见的现象
        • 比如,一个购物中心可能包含了电影院和餐馆,一个办公场所可能包含娱乐设施和健身房
        • 人们访问同一个地点在不同场景下可能是为了不同的目的
        • 现有的方法,将一个地点表示为单一的向量,不能处理在不同场景下地点的功能

1.2 论文思路

  • 为了处理上述地点嵌入中的问题,作者提出了场景化及时间感知的地点嵌入模型CTLE
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值