1 intro
1.1 背景
- 尽管对人类移动轨迹数据集的需求不断增加,但其访问和分发仍面临诸多挑战
- 首先,这些数据集通常由私人公司或政府机构收集,因此可能因泄露个人敏感生活模式而引发隐私问题
- 其次,公司拥有的数据集可能会暴露专有商业模式,通常难以用于研究目的
- 最后,公开可用的数据集通常缺乏多样性或质量,数据点存在空白和固有噪声,显著降低了其实用性
- ——>建立既高质量又可用于研究的替代轨迹数据源是必要的
1.2 目前方法的问题
- 基于GAN和VAE的方法
- 将数据结构化为表格格式
- <——这未能保留位置之间的内在关联
- LSTM和顺序GAN
- 以保持位置的平滑连续性,且捕捉到的真实人类移动特征有限
- 这些方法的另一个限制在于观察到的地理位置序列中存在较高的不匹配率
1.3 论文思路
1.3.1 motivation
- 轨迹和句子具有若干相似之处
- 两者都由从有限池中选择的元素有序集合组成(分别是道路链接和单词)
- 它们展示了语义或时空关系,遵循各自的规则系统,例如句子的语言规则和轨迹的地理约束
- ——>自然语言处理开发的技术可以被改编用来建模和生成真实的轨迹
- 此外,引力模型在人类移动建模中具有重要意义,因为它提供了一个估计和理解不同位置间互动流动的结构化框架
- ——>在合成轨迹生成任务中使用引力作为人类移动建模的一部分可能会带来更多优势