论文略读:Can We Edit Factual Knowledge by In-Context Learning?

EMNLP 2023

  • 第一个探索in-context learning在语言模型知识编辑方便的效果
    • 传统的知识编辑方法通过在包含特定知识的文本上进行微调来改进 LLMs
      • 随着模型规模的增加,这些基于梯度的方法会带来巨大的计算成本
    • ->论文提出了上下文知识编辑(IKE),无需任何梯度和参数更新

1 背景

  • 知识编辑:修改语言模型在与训练阶段学到的知识(比如虚假内容、过时内容、偏见内容等)
    • 目标是双重的
      • 泛化性
        • 对描述相同知识的各种输入进行泛化
      • 特定性
        • 不干扰其他不相关的知识

2 论文方法

3 效果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

UQI-LIUWJ

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值