第七讲 pose_estimation_2d2d.cpp

#include <iostream>

#include <opencv2/core/core.hpp>

#include <opencv2/features2d/features2d.hpp>

#include <opencv2/highgui/highgui.hpp>

#include <opencv2/calib3d/calib3d.hpp>

// #include "extra.h" // use this if in OpenCV2

using namespace std;

using namespace cv;

 

/****************************************************

 * 本程序演示了如何使用2D-2D的特征匹配估计相机运动

 * **************************************************/

 

void find_feature_matches (

    const Mat& img_1, const Mat& img_2,

    std::vector<KeyPoint>& keypoints_1,

    std::vector<KeyPoint>& keypoints_2,

    std::vector< DMatch >& matches );

 

void pose_estimation_2d2d (

    std::vector<KeyPoint> keypoints_1,

    std::vector<KeyPoint> keypoints_2,

    std::vector< DMatch > matches,

    Mat& R, Mat& t );

 

// 像素坐标转相机归一化坐标

Point2d pixel2cam ( const Point2d& p, const Mat& K );

 

int main ( int argc, char** argv )

{

    if ( argc != 3 )

    {

        cout<<"usage: pose_estimation_2d2d img1 img2"<<endl;

        return 1;

    }

    //-- 读取图像

    Mat img_1 = imread ( argv[1], CV_LOAD_IMAGE_COLOR );

    Mat img_2 = imread ( argv[2], CV_LOAD_IMAGE_COLOR );

 

    vector<KeyPoint> keypoints_1, keypoints_2;

    vector<DMatch> matches;

find_feature_matches ( img_1, img_2, keypoints_1, keypoints_2, matches );

    cout<<"一共找到了"<<matches.size() <<"组匹配点"<<endl;

 

    //-- 估计两张图像间运动

    Mat R,t;

    pose_estimation_2d2d ( keypoints_1, keypoints_2, matches, R, t );

 

    //-- 验证E=t^R*scale  t_x就是t^

    Mat t_x = ( Mat_<double> ( 3,3 ) <<

                0,                      -t.at<double> ( 2,0 ),     t.at<double> ( 1,0 ),

                t.at<double> ( 2,0 ),      0,                      -t.at<double> ( 0,0 ),

                -t.at<double> ( 1.0 ),     t.at<double> ( 0,0 ),      0 );

 

    cout<<"t^R="<<endl<<t_x*R<<endl;

 

    //-- 验证对极约束

    Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );

    for ( DMatch m: matches )

    {

        Point2d pt1 = pixel2cam ( keypoints_1[ m.queryIdx ].pt, K );

        Mat y1 = ( Mat_<double> ( 3,1 ) << pt1.x, pt1.y, 1 );//归一化平面坐标

        Point2d pt2 = pixel2cam ( keypoints_2[ m.trainIdx ].pt, K );

        Mat y2 = ( Mat_<double> ( 3,1 ) << pt2.x, pt2.y, 1 );

        Mat d = y2.t() * t_x * R * y1;

        cout << "epipolar constraint = " << d << endl;

    }

    return 0;

}

 

void find_feature_matches ( const Mat& img_1, const Mat& img_2,

                            std::vector<KeyPoint>& keypoints_1,

                            std::vector<KeyPoint>& keypoints_2,

                            std::vector< DMatch >& matches )

{

    //-- 初始化

    Mat descriptors_1, descriptors_2;

// used in OpenCV3

    Ptr<FeatureDetector> detector = ORB::create();

    Ptr<DescriptorExtractor> descriptor = ORB::create();

    // use this if you are in OpenCV2

    // Ptr<FeatureDetector> detector = FeatureDetector::create ( "ORB" );

    // Ptr<DescriptorExtractor> descriptor = DescriptorExtractor::create ( "ORB" );

    Ptr<DescriptorMatcher> matcher  = DescriptorMatcher::create ( "BruteForce-Hamming" );

    //-- 第一步:检测 Oriented FAST 角点位置

    detector->detect ( img_1,keypoints_1 );

    detector->detect ( img_2,keypoints_2 );

 

    //-- 第二步:根据角点位置计算 BRIEF 描述子

    descriptor->compute ( img_1, keypoints_1, descriptors_1 );

    descriptor->compute ( img_2, keypoints_2, descriptors_2 );

 

    //-- 第三步:对两幅图像中的BRIEF描述子进行匹配,使用 Hamming 距离

    vector<DMatch> match;

    //BFMatcher matcher ( NORM_HAMMING );

    matcher->match ( descriptors_1, descriptors_2, match );

 

    //-- 第四步:匹配点对筛选

    double min_dist=10000, max_dist=0;

 

    //找出所有匹配之间的最小距离和最大距离, 即是最相似的和最不相似的两组点之间的距离

    for ( int i = 0; i < descriptors_1.rows; i++ )

    {

        double dist = match[i].distance;

        if ( dist < min_dist ) min_dist = dist;

        if ( dist > max_dist ) max_dist = dist;

    }

 

    printf ( "-- Max dist : %f \n", max_dist );

    printf ( "-- Min dist : %f \n", min_dist );

 

    //当描述子之间的距离大于两倍的最小距离时,即认为匹配有误.但有时候最小距离会非常小,设置一个经验值30作为下限.

    for ( int i = 0; i < descriptors_1.rows; i++ )

    {

  if ( match[i].distance <= max ( 2*min_dist, 30.0 ) )

        {

            matches.push_back ( match[i] );

        }

    }

}

 

 

Point2d pixel2cam ( const Point2d& p, const Mat& K )

{

    return Point2d//为什么cam坐标系是二维?归一化平面?(u-cx)/fx

           (

               ( p.x - k.at<double> ( 0,2 ) ) / K.at<double> ( 0,0 ),

               ( p.y - K.at<double> ( 1,2 ) ) / K.at<double> ( 1,1 )

           );

}

 

 

void pose_estimation_2d2d ( std::vector<KeyPoint> keypoints_1,

                            std::vector<KeyPoint> keypoints_2,

                            std::vector< DMatch > matches,

                            Mat& R, Mat& t )

{

    // 相机内参,TUM Freiburg2

    Mat K = ( Mat_<double> ( 3,3 ) << 520.9, 0, 325.1, 0, 521.0, 249.7, 0, 0, 1 );

 

    //-- 把匹配点转换为vector<Point2f>的形式

    vector<Point2f> points1;

    vector<Point2f> points2;

 

    for ( int i = 0; i < ( int ) matches.size(); i++ )

    {

        points1.push_back ( keypoints_1[matches[i].queryIdx].pt );

        points2.push_back ( keypoints_2[matches[i].trainIdx].pt );

    }

 

    //-- 计算基础矩阵

    Mat fundamental_matrix;

    fundamental_matrix = findFundamentalMat ( points1, points2, CV_FM_8POINT );

//CV_EXPORTS Mat findFundamentalMat( const Mat& points1, const Mat& points2,

                                     //CV_OUT vector<uchar>& mask, int method=FM_RANSAC,

                                    // double param1=3., double param2=0.99 );

// FM_7POINT = CV_FM_7POINT, //!< 7-point algorithm

    //FM_8POINT = CV_FM_8POINT, //!< 8-point algorithm

    //FM_LMEDS = CV_FM_LMEDS,  //!< least-median algorithm

    //FM_RANSAC = CV_FM_RANSAC  //!< RANSAC algorithm

    cout<<"fundamental_matrix is "<<endl<< fundamental_matrix<<endl;

 

    //-- 计算本质矩阵

    Point2d principal_point ( 325.1, 249.7 );//相机光心, TUM dataset标定值

    double focal_length = 521;//相机焦距, TUM dataset标定值

    Mat essential_matrix;

    essential_matrix = findEssentialMat ( points1, points2, focal_length, principal_point );

    cout<<"essential_matrix is "<<endl<< essential_matrix<<endl;

 

    //-- 计算单应矩阵

    Mat homography_matrix;

    homography_matrix = findHomography ( points1, points2, RANSAC, 3 );

//第三个参数 Method used to computed a homography matrix. The following methods are possible:

        //#0 - a regular method using all the points

       // #CV_RANSAC - RANSAC-based robust method

       // #CV_LMEDS - Least-Median robust method

        //# 第四个参数取值范围在 1 到 10 , 绝一个点对的阈值。原图像的点经过变换后点与目标图像上对应点的误差

       // # 超过误差就认为是 outlier

       // # 返回值中 H 为变换矩阵。mask是掩模,online的点

       // H, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC,5.0)

    cout<<"homography_matrix is "<<endl<<homography_matrix<<endl;

 

    //-- 从本质矩阵中恢复旋转和平移信息.

    recoverPose ( essential_matrix, points1, points2, R, t, focal_length, principal_point );

  cout<<"R is "<<endl<<R<<endl;

    cout<<"t is "<<endl<<t<<endl;

    

}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值