数据集制作——语义分割前png、jpg格式标签图转yolo格式.txt文件(附代码)

在这里插入图片描述

💪 图像算法工程师,专业从事且热爱图像处理,图像处理专栏更新如下👇:
📝《图像去噪》
📝《超分辨率重建》
📝《语义分割》
📝《风格迁移》
📝《目标检测》
📝《图像增强》
📝《模型优化》
📝《模型实战部署》
📝《图像配准融合》
📝《数据集》
📝《高效助手》
📝《C++》


在这里插入图片描述

一、YOLO格式

YOLO格式的数据集通常包含两部分:图像文件和对应的文本标注文件。每个文本标注文件中包含了图像中每个物体的类别和位置信息。每一行代表一个物体,格式如下:

<class_id> <x_center> <y_center> <width> <height>

其中,<class_id>是物体类别的ID,<x_center>和<y_center>是物体中心点的坐标,和是物体的宽度和高度。所有的坐标和尺寸都需要被归一化,即除以图像的宽度和高度,因此它们的值都在0到1之间。

二、实现步骤

要将.png格式的标签图转换为YOLO格式的.txt文件,需要以下步骤:

(1)读取.png标签图,每个物体应该被标记为不同的颜色;

(2)解析标签图,对每种颜色进行遍历,找出所有像素点的坐标;

(3)对每种颜色的像素点坐标进行分析,计算出对应的bounding box(通过找到最小和最大的x,y坐标来实现);

(4)将bounding box的坐标和尺寸归一化,然后保存为.txt文件。

三、代码

3.1 参数修改

在这里插入图片描述

3.2 代码

注:.png格式个标签图像,必须是单通道图像。

import os
import cv2
import numpy as np
from scipy.ndimage import label as ndimage_label  # 避免命名冲突


def convert_segmentation_to_yolo(img_path, output_path, num_classes):
    # 读取标签图
    img = cv2.imread(img_path, cv2.IMREAD_GRAYSCALE)
    height, width = img.shape

    # 创建用于存储YOLO格式的列表
    yolo_labels = []

    # 遍历每个类别
    for class_id in range(num_classes):
        # 找到当前类别的所有像素位置
        class_pixels = np.where(img == class_id)

        # 如果当前类别不存在,跳过
        if len(class_pixels[0]) == 0:
            continue

        # 标记同类中不连续的目标
        binary_map = (img == class_id).astype(np.uint8)
        labeled_array, num_features = ndimage_label(binary_map)

        # 遍历每个目标区域
        for feature_id in range(1, num_features + 1):
            # 找到目标区域的像素位置
            object_pixels = np.where(labeled_array == feature_id)

            # 找到目标区域的最小和最大边界
            x_min = np.min(object_pixels[1])
            x_max = np.max(object_pixels[1])
            y_min = np.min(object_pixels[0])
            y_max = np.max(object_pixels[0])

            # 计算中心点和宽高,并归一化
            x_center = (x_min + x_max) / 2 / width
            y_center = (y_min + y_max) / 2 / height
            bbox_width = (x_max - x_min) / width
            bbox_height = (y_max - y_min) / height

            # 保存YOLO格式的标签
            yolo_labels.append(f"{class_id} {x_center:.6f} {y_center:.6f} {bbox_width:.6f} {bbox_height:.6f}")

    # 将YOLO标签写入.txt文件
    txt_file = os.path.splitext(os.path.basename(img_path))[0] + ".txt"
    with open(os.path.join(output_path, txt_file), "w") as f:
        for label in yolo_labels:
            f.write(label + "\n")


# 示例调用
img_folder = 'Images/Segment_Images/image_png'
output_folder = 'Images/Segment_Images/label_txt'
num_classes = 2  # 假设有2个类别

if not os.path.exists(output_folder):
    os.makedirs(output_folder)

# 遍历标签图文件夹并转换
for img_file in os.listdir(img_folder):
    if img_file.endswith('.png'):
        img_path = os.path.join(img_folder, img_file)
        convert_segmentation_to_yolo(img_path, output_folder, num_classes)




四、转换结果

下面是原始的png格式标签图和转换后的yolo格式.txt文件。

在这里插入图片描述

下面是多目标情况的转换结果:

在这里插入图片描述

五、总结

以上就是语义分割前png、jpg格式标签图转yolo格式.txt文件的详细过程,希望能帮到你!

感谢您阅读到最后!😊总结不易,多多支持呀🌹 点赞👍收藏⭐评论✍️,您的三连是我持续更新的动力💖

关注公众号「视觉研坊」,获取干货教程、实战案例、技术解答、行业资讯!

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

视觉研坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值