文献学习
文章平均质量分 93
点云兔子
这个作者很懒,什么都没留下…
展开
-
Eigen Is All You Need: 高效的具有内部关联的连续时间激光惯性里程计
Thien-Minh Nguyen, IEEE 会员,Xinhang Xu,Tongxing Jin,Yizhuo Yang,Jianping Li,Shenghai Yuan,Lihua Xie,IEEE 会士本文提出了一种名为 SLICT2 的连续时间激光惯性里程计 (CT-LIO) 系统,主要有两个创新点。首先,与传统认知相反,CT-LIO 算法可以通过线性求解器在仅几次迭代内完成优化,比常用的非线性求解器更加高效。其次,CT-LIO 更依赖于正确的关联过程,而非迭代次数。基于这些理念,我们实现了一种原创 2024-10-11 10:48:17 · 685 阅读 · 0 评论 -
(DLIO): 具有连续时间运动修正的轻量级LIO算法
在高速飞行或穿越不规则地形的过程中,激光雷达扫描容易因运动引起失真,从而影响状态估计和地图构建。为了解决这一问题,本文提出了一种轻量级的激光雷达-惯性里程计算法(DLIO),该算法采用一种由粗到精的方法来构建连续时间轨迹进行精确的运动修正。我们的方法的关键在于构建一组仅由时间参数化的解析方程,从而实现快速并行的逐点去畸变。这种方法之所以可行,是因为我们的非线性几何观察器具有强大的收敛性,它为初始化敏感的IMU积分步骤提供了精确的状态估计。原创 2024-10-09 09:43:00 · 453 阅读 · 0 评论 -
使用雷达速度因子进行越野导航的鲁棒高速状态估计
在复杂环境中实现机器人自主性以用于关键任务应用需要鲁棒的状态估计。特别是在导航所依赖的外感传感器可能因环境挑战而退化,从而导致任务失败的情况下。这种情况下,调频连续波(FMCW)雷达传感器的潜力得以凸显:作为一种具有直接速度测量能力的补充外感传感方式。在这项工作中,我们整合了FMCW雷达传感器的径向速度测量,使用径向速度因子提供线速度更新,并将其融合到滑动窗口状态估计器中,以与LiDAR姿态和IMU测量相结合。原创 2024-09-19 09:29:29 · 1077 阅读 · 0 评论 -
【论文学习】感知系统的监测 Monitoring of Perception Systems
本文调查了感知系统的运行时监控。感知是机器人和自主系统高完整性应用的关键组成部分,例如自动驾驶汽车。在这些应用中,感知系统的故障可能会危及人类生命,广泛采用这些技术需要开发方法来保证和监控安全运行。尽管感知的重要性至关重要,但目前还没有针对系统级感知监控的正式方法。在本文中,我们形式化了感知系统中运行时故障检测和识别的问题,并提出了一个框架,使用诊断图来建模诊断信息。然后,我们提供了一组确定性、概率性和基于学习的算法,利用诊断图进行故障检测和识别。原创 2024-02-23 15:06:52 · 985 阅读 · 0 评论 -
自动驾驶中的4D毫米波雷达:综述
4D毫米波(mmWave)雷达能够测量目标的距离、方位、俯仰和速度,因此在自动驾驶领域引起了相当大的关注。这归功于其在极端环境中的强大鲁棒性以及出色的速度和俯仰测量能力。然而,尽管与其感知理论和应用相关的研究迅速发展,但关于4D毫米波雷达的综述仍然明显缺乏。为填补这一空白,促进该领域未来的研究,本文提出了关于4D毫米波雷达在自动驾驶中的综合综述。首先对4D毫米波雷达的理论背景和进展进行综述,包括信号处理流程、分辨率改进方法、外参标定过程和点云生成方法。翻译 2024-01-02 19:38:45 · 1783 阅读 · 0 评论 -
雷达里程计中需要扫描匹配吗?
最简单的方法,利用惯性测量单元(IMU)提供的方向信息和雷达多普勒速度测量来进行姿态估计。利用扩展卡尔曼滤波器(EKF)进行融合,将雷达多普勒速度、惯性和气压计测量结合在一起,提供更为稳健的噪声处理和姿态估计。利用高分辨率雷达数据,采用基于点到平面的迭代最近点(ICP)方法进行局部地图的匹配。使用扫描匹配方法,比如自适应概率分布的GICP(APDGICP)和正态分布变换(NDT),这些方法通常用于大型SLAM框架的前端模块。翻译 2024-01-01 16:48:47 · 161 阅读 · 0 评论 -
4D Millimeter-Wave Radar in Autonomous Driving: A Survey
5.数据集题目:4D Millimeter-Wave Radar in Autonomous Driving: A Survey名称:自动驾驶4D毫米波雷达研究综述0.摘要4D毫米波雷达能够测量,引起了自动驾驶界的极大兴趣。这归功于其在极端环境中的稳健性以及卓越的速度和高程测量能力。然而,尽管其传感理论和应用研究进展迅速,但对4D毫米波雷达的研究却明显不足。为了解决这一差距并促进该领域的未来研究,本文对4D毫米波雷达在自动驾驶中的应用进行了全面的调查。翻译 2023-10-18 11:16:12 · 180 阅读 · 0 评论 -
R3 LIVE:一个强大、实时、RGB彩色、激光雷达-惯性-视觉紧密耦合的状态估计和建图
我们系统的概述如图2所示,我们提出的框架包含两个子系统:LIO子系统(上部分)和VIO子系统(下部分)。LIO子系统构建了一个全局地图的几何结构,它注册输入的激光雷达扫描,并通过最小化点到平面的残差来估计系统的状态。VIO子系统构建地图的纹理,它使用输入图像为每个点渲染RGB颜色,并通过最小化帧与帧之间的PnP重投影误差和帧与地图的光度误差来更新系统状态。图2:我们提出的系统概述。翻译 2023-09-25 16:25:33 · 3263 阅读 · 0 评论 -
自动驾驶地面车辆的雷达里程计:方法与数据集综述
自动驾驶地面车辆的雷达里程计:方法与数据集综述摘要:雷达里程计在过去十年中受到越来越多的关注。它是在不利条件下进行机器人状态估计的最佳解决方案之一,其他内部感知和外部感知传感器可能在这些条件下无法胜任。雷达被广泛采用,对天气和光照条件具有强大的适应性,并提供多普勒信息,使其非常适用于此类任务。本文对自主机器人的地面雷达里程计的最新研究工作进行了广泛的调查。除了对解决这个问题所采用的各种方法和技术进行深入分析和分类外,本文还涵盖了过去十年中开发的技术、数据集、评估指标和方法。翻译 2023-07-25 14:22:58 · 1823 阅读 · 0 评论