1 算法原理
Yu Zhong提出了一种识别表示为3D点云的3D对象的新方法。引入了一种称为内在形状签名(Intrinsic Shape Signature,ISS)的新3D形状描述符,以表征点云的局部/半局部区域。固有形状签名使用与视图无关的 3D 形状表示来直接匹配来自不同视图的形状斑块,并使用编码查看几何图形的视图相关变换来促进快速姿态估计。
特征点是图像点云中那些可以通过定义检测标准提取的稳定、独特的点集,其数量远小于原始点数。ISS 特征点是一种通过与邻域信息建立联系,并利用特征值之间的关系来表示点特征程度的方法。其主要步骤如下:
- 对每个查询点 设定一个搜索半径 r。
- 计算查询点 pi与邻域内各点的欧氏距离,并设定权值 。
-
计算每个查询点 pi与邻域内所有点的协方差矩阵 cov()
-
计算协方差矩阵 cov() 的所有特征值{ ,,} ,并将其按照从大到小排序。
-
设定阈值 和 ,若其满足式(3) 即为ISS 特征点。
2 代码实现
#include <pcl/io/pcd_io.h>
#include <pcl/point_types.h>
#include <pcl/common/io.h>
#include <pcl/keypoints/iss_3d.h>
#include <pcl/features/normal_3d.h>
#include <pcl/visualization/pcl_visualizer.h>
typedef pcl::PointCloud<pcl::PointXYZRGBA> PointCloud;
//点云可视化
// 显示model+scene以及他们的keypoints
void
visualize_pcd(PointCloud::Ptr model, pcl::PointCloud<pcl::PointXYZRGB>::Ptr scene_keypoints)
{
pcl::visualization::PCLVisualizer viewer("registration Viewer");
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZRGBA> model_color(model, 0, 255, 0);
pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZRGB> scene_keypoint_color(scene_keypoints, 0, 0, 255);
viewer.setBackgroundColor(255, 255, 255);
viewer.addPointCloud(model, model_color, "model");
viewer.addPointCloud(scene_keypoints, scene_keypoint_color, "scene_keypoints");
viewer.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, "scene_keypoints");
while(!viewer.wasStopped())
{
viewer.spinOnce(100);
boost::this_thread::sleep(boost::posix_time::microseconds(100000));
}
}
// 你的文件地址
const std::string filename = "D:\\clouddata\\dragonStandRight_0.pcd";
int
main(int, char** argv)
{
pcl::PointCloud<pcl::PointXYZRGBA>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZRGBA>);
if (pcl::io::loadPCDFile<pcl::PointXYZRGBA>(filename, *cloud) == -1) // load the file
{
pcl::console::print_error("Couldn't read file %s!\n", argv[1]);
return (-1);
}
std::cout << "points: " << cloud->points.size () <<std::endl;
pcl::ISSKeypoint3D<pcl::PointXYZRGBA, pcl::PointXYZRGB> iss_detector;
pcl::PointCloud<pcl::PointXYZRGB>::Ptr keypoints (new pcl::PointCloud<pcl::PointXYZRGB> ());
pcl::search::KdTree<pcl::PointXYZRGBA>::Ptr tree (new pcl::search::KdTree<pcl::PointXYZRGBA> ());
iss_detector.setSearchMethod (tree);
iss_detector.setSalientRadius (0.007f);
iss_detector.setNonMaxRadius (0.005f);
iss_detector.setThreshold21 (0.65); //for resolution 0.004f
iss_detector.setThreshold32 (0.1); //for resolution 0.004f
iss_detector.setMinNeighbors (4); //for resolution 0.004f
iss_detector.setNumberOfThreads (4); //for resolution 0.004f
iss_detector.setInputCloud (cloud); //
iss_detector.compute (*keypoints); //
std::cout << "N of ISS_3D points in the result are " << (*keypoints).points.size () << std::endl;
pcl::io::savePCDFile("keypoints_iss_3d.pcd", *keypoints, true);
// Visualization
visualize_pcd(cloud, keypoints);
return 0;
}
3 结果展示