三维点云处理
文章平均质量分 71
点云兔子
这个作者很懒,什么都没留下…
展开
-
如何在PCL中添加自定义点类型
首先,我们需要定义一个新的点类型结构。float test;原创 2024-05-21 10:02:34 · 752 阅读 · 0 评论 -
点云处理开发测试题目
文件夹中有一个场景的三块点云数据,单位mm。是一个桌子上放了一个纸箱,纸箱上有四个圆孔。2. 计算出纸箱上的四个圆的圆心坐标和半径,对圆心坐标进行排序,沿着X+方向排序并把排序后的圆心坐标保存到本地。3. 在每个圆的圆心位置绘制一个小坐标系,x轴方向沿着纸箱长边方向,y轴沿着纸箱短板方向,Z轴朝上。1. 绘制出最小外接立方体,得到纸箱的长宽高值。注意高度计算是纸箱平面到桌子平面的距离。原创 2023-10-04 19:30:44 · 224 阅读 · 0 评论 -
点云文件格式相互转化
OBJ(Wavefront OBJ)和PCD(Point Cloud Data)是两种不同的文件格式,用于存储不同类型的3D数据。OBJ文件通常用于表示3D模型的几何形状和纹理信息,而PCD文件通常用于表示点云数据,例如激光扫描数据或3D传感器捕获的点云。原创 2023-09-10 13:10:04 · 870 阅读 · 0 评论 -
pcd格式点云与txt格式文本相互转化
另一个优势是通过控制文件格式,我们能够使其最大程度上适应PCL,这样能获得PCL应用程序的最好性能,而不用把一种不同的文件格式改变成PCL的内部格式,这样的话通过转换函数会引起额外的延时。但实际中,情况不是这样的,因为上面提到的文件格式无一能提高PCD文件的适用性和速度。所有上述文件格式都有一些缺点,这是很自然的,因为它们是在不同的时间,不同的时间创建的,在今天的传感技术和算法发明之前。注意:尽管PCD(点云数据)是PCL中的内部文件格式,pcl_io库也提供在前面提到的所有其他文件格式中保存和加载数据。原创 2022-10-13 20:12:43 · 1077 阅读 · 0 评论 -
【点云配准】迭代最近点(ICP)配准算法
点云配准(Point Cloud Registration)指的是输入两幅点云(source)和(target) ,输出一个变换T使得T(Ps)和T(Pt)的重合程度尽可能高;Ps和Pt是源点云和目标点云中的对应点。变换T可以是刚性的(rigid),也可以不是,一般只考虑刚性变换,即变换只包括旋转、平移。点云配准可以分为粗配准(Coarse Registration)和精配准(Fine Registration)两步。原创 2022-09-23 09:37:52 · 3204 阅读 · 0 评论 -
【三维点云数据处理】ISS3d+CSHOT+RANSAC+ICP
【三维点云数据处理】ISS特征点提取算法【三维点云数据处理】SHOT三维特征描述子【三维点云数据处理】RANSAC实现点云粗配准 利用ISS3d+CSHOT+RANSAC+ICP来实现点云的配准。前面已经将ISS3D、SHOT三位特征描述子、RANSAC粗配准都进行了讲解,接下来将这些结合起来实现点云的粗配准,最后使用ICP进行优化,最终实现点云的配准。一、算法原理 首先利用ISS3D算法找到点云P和点云Q的关键点,ISS3D具有旋转不变性的特点,所以理论上两幅点云的相同特征具有原创 2022-07-01 09:26:24 · 5348 阅读 · 4 评论 -
【三维点云数据处理】Kd-Tree实现最近邻搜索
前言二、代码实现1.关键函数2.代码示例三、结果展示点云数据处理中最为核心的问题就是建立离散点间的拓扑关系 , 实现基于邻域关系的快速查找。一、kd-tree是什么? kd-tree 或者 k 维树是计算机科学中使用的一种数据结构 , 用来组织表示 k 维空间中点集合。它是一种带有其他约束条件的二分查找树。kd-tree 对于区间和近邻搜索十分有用。我们为了达到目的 , 通常只在三个维度中进行处理 , 因此所有的 kd-tree 都将是三维 kd-tree。如图 所示 ,kd-tree 的每一原创 2022-06-17 11:55:25 · 5133 阅读 · 0 评论 -
【三维点云数据处理】SHOT三维特征描述子
【三维点云数据处理】ISS特征点提取算法2014年 ,Tombari等 将点签名和点特征直方图的思想相结合,提出SHOT特征描述子。首先将点邻域空间分成几个子空间,然后对子空间中每个点的法向特征统计到直方图进行编 码,再将每个子空间的直方图联合到一起得到三维描述子。此方法对于含有噪声、杂波的点云以及密度不均的点云都具有一定的鲁棒性、高效性和较好的描述性。具体过程如下:1. 按照上图所述的协方差矩阵,通过求解可得协方差矩阵的特征值以及特征值对应的特征向量,将特征值以递减的顺序进行排列可得,其对应的向量为,分原创 2022-06-16 09:46:27 · 3053 阅读 · 9 评论 -
【三维点云数据处理】ISS特征点提取算法
1 算法原理 Yu Zhong提出了一种识别表示为3D点云的3D对象的新方法。引入了一种称为内在形状签名(Intrinsic Shape Signature,ISS)的新3D形状描述符,以表征点云的局部/半局部区域。固有形状签名使用与视图无关的 3D 形状表示来直接匹配来自不同视图的形状斑块,并使用编码查看几何图形的视图相关变换来促进快速姿态估计。特征点是图像点云中那些可以通过定义检测标准提取的稳定、独特的点集,其数量远小于原始点数。ISS 特征点是一种通过与邻域...原创 2022-05-31 21:01:12 · 5952 阅读 · 1 评论 -
PCL点云可视化
PCL点云可视化前言代码实现结果显示前言PCLVisualizer可视化类是PCL中功能最全的可视化类,与CloudViewer可视化类相比,PCLVisualizer使用起来更为复杂,但该类具有更加全面的功能,如显示法线、绘制多种形状和多个视口。代码实现#include <iostream>#include <boost/thread/thread.hpp>#include <pcl/common/common_headers.h>#include <原创 2022-05-10 11:34:20 · 904 阅读 · 0 评论 -
手写RANSAC实现点云粗配准
此过程重复固定次数,每次生成因点太少而被丢弃的模型,或将优化模型与相应的误差度量一起进行。在后一种情况下,如果优化模型的误差低于上次保存的模型,我们将保留该模型。然后,根据拟合模型测试所有其他数据,如果某个点与估计的模型非常契合,则也将其视为假设的进一值。该模型是从所有假设的入值中重新估计的,因为它仅从初始的假设入值集进行估计。模型拟合到假设的入值,即模型的所有自由参数都是从进值重建的。如果有足够的点被归类为假设的入值,则估计的模型是相当好的。最后,通过估计值相对于模型的误差来评估模型。原创 2022-04-25 16:52:14 · 7299 阅读 · 8 评论 -
【三维点云数据处理】PCL直通滤波器
PCL直通滤波器一、 算法原理关键函数二、代码实例1. 代码示例12.代码示例2三、结果展示示例1结果展示示例2结果展示一、 算法原理 直通滤波器:class pcl: : PassThrough<< PointT >对指定维度(X,Y,Z,BGR等)进行某一个范围滤波,可以删除这个范围内部点,也可以删除这个范围外部的点。类 PassThrough 实现对用户给定点云某个字段的限定下 ,原创 2022-04-01 17:48:06 · 919 阅读 · 0 评论 -
【三维点云数据处理】用python实现KDTree(不使用Open3D)
python实现KDTreeKDTree简介构建KDTree示例Python实现代码结果展示KDTree简介KD 树又称 K 维树 (K-dimensional tree),是一种可以对 K 维数据进行划分的数据结构,可以看成二元搜索树的一种延伸,不断的对空间中的维度做划分,利用搜寻树剪枝的特性缩短时间复杂度,主要应用在多维空间搜寻,例如最近邻居搜索。构建KDTree创建 KD 树的方法使用:标准 KD 树分割规则选择最大变异数作为维度选择方法将数据储存在所有节点KD 树的建立过程如下原创 2022-03-22 11:16:19 · 3079 阅读 · 1 评论 -
【三维点云配准】4PCS算法实现点云粗配准
4PCS算法实现点云粗配准算法原理1. 问题描述1.1 RANSAC1.2 Randomized Alignment2 4PCS概述2.1 Overview2.2 4点对的仿射不变性C++实现代码实验结果算法原理4PCS[1]配准算法使用的是RANSAC算法框架,通过构建与匹配全等四点对的方式来减少空间匹配运算,进而加速配准过程。 具体的在任意姿态的输入点云P和Q中构建共面四点集合,使用仿射不变性约束,在共面四点集合中匹配符合条件的对应点对,使用LCP(Largest Common Pointset)策原创 2022-03-21 18:46:11 · 5619 阅读 · 32 评论 -
【三维点云数据处理】PCL三维点云配准 SACIA
三维点云粗配准算法SAC_IA原创 2022-02-23 10:11:27 · 3787 阅读 · 1 评论 -
【三维点云处理】PCA主成分析+实践(二)
PCA主成分析+实践(二)利用PCA将点云投影到二维平面Python代码利用PCA将点云投影到二维平面Python代码承接上一篇三维点云处理:PCA主成分析+实践(一)添加链接描述proj_vector =v[:,0:2] #取前两个向量proj_point = np.matmul(points, proj_vector)proj_point = np.concatenate((proj_point,np.zeros([point_num, 1])),axis=1) #添加一个z轴方便可视化,原创 2022-03-03 09:21:00 · 3242 阅读 · 0 评论 -
【三维点云处理】PCA主成分析+实践(一)
@[TOC]三维点云处理:PCA主成分析+实践#PCA简介#python代码#实验结果PCA简介PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法。PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。详情查看这两篇稿子一二python代码import open3d as o3d import osimport numpy as npimpor原创 2022-03-02 22:41:53 · 5946 阅读 · 0 评论