- 摘要
- 【立意】:对next-item(top-k的首选项目)黑盒推荐的中毒攻击。
- 【方法】:用强化学习训练攻击代理,生成有毒用户的行为样本。攻击代理与推荐模拟器交互。
- 【推荐模拟器】:通过构建多个具有代表性的推荐模型的集合,构建了局部推荐模拟器,如果两个推荐者能够在给定的数据集上都得到相似的推荐结果,那么为其中一个推荐者生成的对抗性样本就可以用来攻击另一个。
- 【现有中毒攻击】:1.启发式规则,将目标项目与热度高的项目建立联系。2.对特定的推荐系统进行中毒攻击
- 【可用的知识】
- 1.攻击者可以访问推荐系统中所有用户的完整活动历史记录。
- 2.攻击者的资源有限,因此攻击者只能注入有限数量的受控用户,用户可以很容易地从地下市场购买。
- 3.攻击者不知道关于目标推荐系统的详细信息,例如,推荐模型的参数和体系结构。这种设置也被称为黑盒设置。
- 4.攻击者只能从黑盒推荐模型中接收到有限数量的反馈(例如,显示率)。
- 5.攻击者不知道何时重新训练目标黑盒推荐模型。
- 方法论
- 框架概述:
- 从强化学习的角度来看,目标是学习一个策略函数来生成顺序的对抗性用户行为样本,从而最大限度地提高目标用户的平均显示率。
- 框架概述:
【论文阅读】LOKI-Practical Data Poisoning Attack against Next-Item Recommendation
于 2022-07-07 17:07:02 首次发布