【论文阅读】LOKI-Practical Data Poisoning Attack against Next-Item Recommendation

  • 摘要
    • 【立意】:对next-item(top-k的首选项目)黑盒推荐的中毒攻击。
    • 【方法】:用强化学习训练攻击代理,生成有毒用户的行为样本。攻击代理与推荐模拟器交互。
    • 【推荐模拟器】:通过构建多个具有代表性的推荐模型的集合,构建了局部推荐模拟器,如果两个推荐者能够在给定的数据集上都得到相似的推荐结果,那么为其中一个推荐者生成的对抗性样本就可以用来攻击另一个。
    • 【现有中毒攻击】:1.启发式规则,将目标项目与热度高的项目建立联系。2.对特定的推荐系统进行中毒攻击
    • 【可用的知识】
      • 1.攻击者可以访问推荐系统中所有用户的完整活动历史记录。
      • 2.攻击者的资源有限,因此攻击者只能注入有限数量的受控用户,用户可以很容易地从地下市场购买。
      • 3.攻击者不知道关于目标推荐系统的详细信息,例如,推荐模型的参数和体系结构。这种设置也被称为黑盒设置。
      • 4.攻击者只能从黑盒推荐模型中接收到有限数量的反馈(例如,显示率)。
      • 5.攻击者不知道何时重新训练目标黑盒推荐模型。
  • 方法论
    • 框架概述:
      • 从强化学习的角度来看,目标是学习一个策略函数来生成顺序的对抗性用户行为样本,从而最大限度地提高目标用户的平均显示率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值