【C++】OpenCV:YOLO目标检测介绍及实现示例

1. 原理

我们都知道,yolo这些深度学习检测算法都是在python下用pytorchtf框架这些训练的,训练得到的是pt或者weight权重文件,这些是算法开发人员做的事情,如何让算法的检测精度更高、速度更快。

但在工程化的时候,一般还是要用C++实现的,OpenCV不只是能进行图像的基本处理(以前我太肤浅了),它还有很多能处理深度学习的模块,比如DNN模块就支持调用多种框架下训练的权重文件。

下面就在VS2017+OpenCV454环境下进行演示。可以选择4种yolo变体,可以检测图片或视频。
(代码参考这位博主,以下是集成和演示)

2. 图片检测程序

运行代码前,请先配置好VS和OpenCV环境,然后准备好yolo相关权重文件(cfg+weight)。

首先定义yolo.h头文件:


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DevFrank

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值