在网络结构方面,U-net已经在皮肤癌分割、肺结节分割等方面证明了其强大的优越性。
本文解读其论文:U-Net: Convolutional Networks for Biomedical Image Segmentation
(论文地址:http://www.arxiv.org/pdf/1505.04597.pdf)并与FCN对比。
核心思想
U-net基于FCN,对原有网络进行了调整、延伸,使其可以用很少的数据进行训练并且更精确分割,主要有以下几方面:
1、对比FCN,U-net的一重大调整是在上采样过程中仍然有大量的feature channels,这样使得网络可以向高分辨率层传播上下文信息。
2、采用overlap-tile策略:对图像的某一块像素点(黄框内部分)进行预测时,需要该图像块周围的像素点(蓝色框内)提供上下文信息(context),以获得更准确的预测。而对边缘缺失的部分,采用镜像补全。
3、采用elastic deformation的数据增强方式。
4、针对细胞分割,提出一种加权损失函数,细胞接触的地方会获得相对较大的权重,以将接触的细胞分割开来。
网络结构
网络结构呈“U”型,结构中最有特色的结构就是特征的拼接部分(灰色箭头),用叠加的方式取代FCN中的求和方式,在上采样过程中传递更完整的特征信息,有效提高分割的精确度。
实际应用表现
以下的数据展示出U-net取得的优异成绩:
可以看出,U-net已经证明其在图像分割领域强大的潜力,待人继续发掘。