EM算法的推导

概括

EM算法是用来求解极大似然函数的一种数学方法,在机器学习中的很多地方都可以见到他的影子,如GMM,HMM,LDA,PLSA(目前本人只是接触过这几个)等等。


先从最经典的GMM算法说起
加入现在给你一堆数据分别为h1,h2,h3…代表n名学生的身高,我们又知道学生的身高服从参数为(μ1,σ1)的高斯分布,那么我们很自然的想到用极大似然估计的想法求出两个参数。但是如果现在h1,h2,h3…n名同学的身高给出后,我们并不知道他们是男是女,男生身高服从参数为(μ1,σ1)的高斯分布,女生身高服从参数为(μ2,σ2)的高斯分布,我们又该如何去计算呢?仍然用极大似然估计的方法如下:
m a x ∑ i = 1 100 l o g P { h i ∣ μ 1 , σ 1 , μ 2 , σ 2 } max\sum_{i=1}^{100}logP\{hi|\mu1,\sigma1,\mu2,\sigma2\} maxi=1100logP{hiμ1,σ1,μ2,σ2}
但是我们并不知道每个人是属于男生还是女生,设Z为性别变量,有
(1) m a x ∑ i = 1 100 l o g ∑ z = 1 2 P { h i , z ∣ μ 1 , σ 1 , μ 2 , σ 2 } max\sum_{i=1}^{100}log\sum_{z=1}^{2}P\{hi,z|\mu1,\sigma1,\mu2,\sigma2\}\tag{1} maxi=1100logz=12P{hi,zμ1,σ1,μ2,σ2}(1)
正常求导去做,但是我们发现对数当中求导数很不好做所以,就有了EM算法,再看EM算法之前我们先来了解已下Jeson不等式
f ( x ) f(x) f(x)是函数,那么有

f ( E ( X ) ) ≥ q E ( f ( X ) ) f(E(X))\geq qE(f(X)) f(E(X))qE(f(X))
ps:其实是根据凸函数不等式得来的

先对公式(1)做一个简单的变形上面的公式
(2) m a x ∑ i = 1 100 l o g ∑ z = 1 2 Q ( z ) P { h i , z ∣ μ 1 , σ 1 , μ 2 , σ 2 } Q ( z ) max\sum_{i=1}^{100}log\sum_{z=1}^{2}\frac{Q(z)P\{hi,z|\mu1,\sigma1,\mu2,\sigma2\}}{Q(z)} \tag{2} maxi=1100logz=12Q(z)Q(z)P{hi,zμ1,σ1,μ2,σ2}(2)
其中Q(z)是z的一个分布,所以log里面是一个求 P { h i , z ∣ μ 1 , σ 1 , μ 2 , σ 2 } Q ( z ) \frac{P\{hi,z|\mu1,\sigma1,\mu2,\sigma2\}}{Q(z)} Q(z)P{hi,zμ1,σ1,μ2,σ2}关于 Q ( z ) Q(z) Q(z)的均值
log是凸函书,根据
jeson不等式
公式2(先去点max)为
∑ i = 1 100 l o g ∑ z = 1 2 Q ( z ) P { h i , z ∣ μ 1 , σ 1 , μ 2 , σ 2 } Q ( z ) ≥ ∑ i = 1 100 ∑ z = 1 2 Q ( z ) l o g P { h i , z ∣ μ 1 , σ 1 , μ 2 , σ 2 } Q ( z ) \sum_{i=1}^{100}log\sum_{z=1}^{2}\frac{Q(z)P\{hi,z|\mu1,\sigma1,\mu2,\sigma2\}}{Q(z)} \geq \sum_{i=1}^{100}\sum_{z=1}^{2}Q(z)log\frac{P\{hi,z|\mu1,\sigma1,\mu2,\sigma2\}}{Q(z)} i=1100logz=12Q(z)Q(z)P{hi,zμ1,σ1,μ2,σ2}i=1100z=12Q(z)logQ(z)P{hi,zμ1,σ1,μ2,σ2}
这样一来等号就全部都移到左边去了,log中就没有连加项了。
我们现在来对问题一般化
设要求的问题为
∑ Y l o g P { Y ; θ } = ∑ Y l o g ∑ z P { Y , Z ; θ } = ∑ Y l o g ∑ z Q ( z ) P { Y , Z ; θ } Q ( z ) \sum_{Y}logP\{Y;\theta\}=\sum_{Y}log\sum_{z}P\{Y,Z;\theta\}=\sum_{Y}log\sum_{z}Q(z)\frac{P\{Y,Z;\theta\}}{Q(z)} YlogP{Y;θ}=YlogzP{Y,Z;θ}=YlogzQ(z)Q(z)P{Y,Z;θ}
Q ( z ) Q(z) Q(z)是z的分布
∑ Y l o g ∑ z Q ( z ) P { Y , Z ; θ } Q ( z ) ≥ ∑ Y ∑ z Q ( z ) l o g p ( Y , Z ; θ ) Q ( z ) \sum_{Y}log\sum_{z}Q(z)\frac{P\{Y,Z;\theta\}}{Q(z)} \geq \sum_Y\sum_zQ(z)log\frac{p(Y,Z;\theta)}{Q(z)} YlogzQ(z)Q(z)P{Y,Z;θ}YzQ(z)logQ(z)p(Y,Z;θ)
Q ( z ) = p ( z ∣ x ; θ ) Q(z)=p(z|x;\theta) Q(z)=p(zx;θ)的时候等号成立(也是根据凸函数的性质得出的,此处不再证明)
在这里插入图片描述
图像的几何意义如上图所示,这里Y为X。原式 ≥ \geq 号恒成立。而由条件 Q ( z ) = p ( z ∣ x ; θ ) Q(z)=p(z|x;\theta) Q(z)=p(zx;θ)可以知道,只有此条件成立的时候才能取等号,我们现在这样考虑这个问题。无论 θ \theta θ取什么值,只要Q(z)满足上面的条件等式就能成立,那么我们随便取一个 θ \theta θ,令 θ = θ 1 \theta=\theta_1 θ=θ1,然后根据 Q ( z ) = p ( z ∣ x ; θ ) Q(z)=p(z|x;\theta) Q(z)=p(zx;θ)得出Q(z),记作 Q ( z 1 ) = p ( z ∣ x ; θ 1 ) Q(z1)=p(z|x;\theta_1) Q(z1)=p(zx;θ1),现在只将 Q ( z 1 ) Q(z1) Q(z1)带入不等式中,注意只将 Q ( z 1 ) Q(z1) Q(z1)带入, θ \theta θ依然是个参数,注意到无论 θ \theta θ Q ( z ) Q(z) Q(z)取什么值,不等式恒成立。只有 θ 1 \theta_1 θ1 Q ( z 1 ) Q(z1) Q(z1)同时带入进去,等式才能成立,但是现在我们只是带入了 θ 1 \theta_1 θ1所以不等式是严格的大于,此时就和上图完整的对照起来了,当这时候的 θ 1 \theta_1 θ1就是上图的 θ o l d \theta_{old} θold,因为现在Q(z)是已知的,所以只有 θ \theta θ是未知的,可以对 θ \theta θ求导,求完之后再带回到原来的公式中,就可以得到更优的结果。然后再用心的 θ n e w \theta_{new} θnew求出 Q ( z ) = p ( z ∣ x ; θ n e w ) Q(z)=p(z|x;\theta_{new}) Q(z)=p(zx;θnew)中的 Q ( z ) Q(z) Q(z)之后继续上面的步骤,当然一开始的时候要初始化一个 θ = θ 0 \theta= \theta_0 θ=θ0才能开始迭代过程。

最后EM能得到什么呢,能得到 P ( Z ∣ Y , θ ) P(Z|Y,\theta) P(ZY,θ)的分布,还有参数 θ \theta θ的最优结果。EM算法中将Z成为隐变量,也就是问题中不能直接观测到的变量。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值