机器学习评估指标 - f1, precision, recall, acc, MCC

本文介绍了二分类任务中混淆矩阵的概念及TP、TF、FP、FN的具体含义,并基于混淆矩阵详细解释了f1值、精确度、召回率、准确率及MCC等评估指标的计算方法与应用价值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 介绍 TP, TF, FP, FN

        TP, TF, FP, FN 是针对二分类任务预测结果得到的值,这四个值构成了混淆矩阵;

        如下图的混淆矩阵:

        左侧表示真实的标签,human标记为0; fake标记为1;

        右侧部分predicted class表示预测的标签;

        因此: TN表示(True -- 预测正确, Negitive, 预测为0)预测标签为0(human),预测正确;

                     FN表示(False -- 预测错误,Negitive, 预测为0)预测标签为0(human),预测错误;

                     FP表示  (False -- 预测错误, Positive, 预测为1)预测标签为1(fake),预测错误;

                     TP表示(True -- 预测正确, Positive, 预测为1)预测标签为1(fake),预测正确;

2 介绍f1, precision, recall, acc, MCC

        f1, precision, recall, acc, MCC是由上述混淆矩阵的四个值计算得到的;

        计算公式:

        acc = \frac{TP + TN}{TP+TN+FP+FN} 

                acc预测的真实结果,总体数据中,有多少数据被预测正确了;

        recall = \frac{TP}{TP+FN}

                recall 预测为bot且预测正确的数量占全部预测为bot数量的比例;

        Precision = \frac{TP}{TP + FP}

                Precision 预测为bot且预测正确的数量占实际为bot数量的比例;

        f1 = \frac{2*Precision*recall}{Precision+recall}

        MCC =

        f1 和 Mcc为综合评价指标;

上述五个指标优劣分析:

        准确度(acc)衡量有多少样本在两个类中被正确识别,但它不表示一个类能否被另一个类更好地识别;

        高精确度(Precision)表明许多被识别为1(bot)的样本被正确识别,但它没有提供有关尚未识别的1(bot)样本的任何信息;

        该信息由召回指标(recall)提供,表示在整个1(bot)样本集中有多少样本被正确识别:低召回意味着许多1(bot)样本未被识别;

        F1 和 MCC 试图在以一个单一的值中传达预测的质量,并结合其他指标。

        MCC 被认为是 F1 的无偏版本,因为它使用了混淆矩阵的所有四个元素。 MCC 值接近 1 表示预测非常准确;接近 0 的值意味着预测并不比随机猜测好,接近 -1 的值意味着预测与真实类别严重不一致。

        

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值