组合最优化——期末总结

这次,我绝对不会再做预测了,绝不可能被打脸
一、基本概念:
1、组合最优化:又称为离散最优化通过对数学方法的研究去寻找离散事件的最优编排、分组、次序或筛选等。可用数学模型表述为:
min f(x)
s.t. g(x)≥0,
x ∈ D

2、组合最优化问题:在给定有限集合的所有具备某些特性的子集族中,寻找使某种指标达到最优的子集的问题。

3、组合最优化问题的目标通常是从组合问题的可行解集中求出最优解

4、算法:一步步求解问题的通用程序,它是解决问题的程序步骤的一个清晰描述

5、定型算法:算法从前一步到后一步的运行是由当时状态唯一确定的

6、算法能解决问题:一个算法,它对问题任意一个给定实例,在有限步之后,一定能得到该实例的答案

7、近似算法:对于一个优化问题,给定任意一个实例,算法总能找到一个可行解

8、最优算法:对于一个优化问题,给定任意一个实例,算法总能找到一个可行解,且这个可行解的目标值总等于最优解值

9、计算复杂性:用算法中的加、减、乘、除和比较等基本运算的总次数(计算时间)C(I)同实例I在计算机计算时的二进制输入数据(输入规模/长度d(I))的大小关系:C(I) = f(d(I))

10、判定问题:一个问题的每一个实例只有“是”或“否”两种答案

11、多项式转换(变换):通过一个算法将两个问题的两个实例之间实现了转换,使实例的解一一对应,即将输入转换为输入,并且得到的结果相对应

12、多项式归约:在多项式时间内,将问题1的输入转换为问题2的输入,则成问题1归约为问题2

13、NP难问题:对于判定问题A,若NP中的任何一个问题可在多项式时间归约为判定问题A,则称A为NP困难问题

14、cook定理的NPC证明:NP中的任何一个问题可在多项式时间内归约为SAT

15、不确定一维搜索:
对于一元函数φ(α),精确一维搜索的条件为φ ’(αk)=0
不精确一维搜索的条件φ ’(αk)≈0,或 |φ ’(αk) | ≤ σ
实际计算中上式不好控制,一般的方法是|φ ’(αk) / φ ’(0) | ≤ σ

16、凸集:
对于一个数集合D,对于其中的任何两个数x和y,构成一个点,以及我们所选的任何实数a,0<a<1,都有

a*x+(1-a)*y∈D

则证明集合D是一个凸集
**性质1:**有限个(或者无限个)凸集的交集为凸集
**性质2:**假设D是凸集,β是一个实数,则下面的集合是凸集

β*D={
   y|y=β*x, x∈D}

**性质3:**两个凸集的和集是凸集

D1+D2={
   y|y=x+z,x∈D1,z∈D2}

**推论1:**凸集的线性组合是凸集
**推论2:**凸集中任意有限个点的凸组合仍然在该凸集中

17、极点:
对于一个凸集D中的x,如果D中不存在两个相异的数y,z及某一个实数a,0<a<1,使得

x=α*y+(1-α)*z

则x为D的极点
**性质1:**若D={x ∈Rn| ||x||≤a}(a>0),则||x||=a上的点均为极点

证明:设||x||=a,若存在y,z ∈D及α∈(0,1),使
得x=αy+(1-α)z.则 
a2=||x||2=(αy+(1-α)z,αy+(1-α)z) 
≤α2||y||2+(1-α)2||z||2+2α (1-α)||y||||z||≤a2
不等式取等号,必须||y||=||z||=a,且( y,z ) =||y||||z||,
容易证明y=z=x,根据定义可知,x为极点.

18、凸函数:
设函数f(x)定义在凸集D上,如果对应任意的x,y∈D,及任意的a∈[0,1]都有

f (α x+(1-α)y) ≤ α f(x)+(1-α) f (y)

则f(x)为凸集D上的凸函数
同理,有严格凸函数的定义
设函数f (x)定义在凸集D上,若对任意的x,y∈D,x≠y,及任意的α ∈(0,1)都有

f (α x+(1-α)y) < α f(x)+(1-α) f (y)

则称函数f (x)为凸集D上的严格凸函数
最常见的严格凸函数是二次函数y=x^2

19、线性规划一般形式:

min(max) c1x1+c2x2+···+cnxn
s.t. a11x1+a12x2+···+a1nxn≥(或≤,=)b1
 a21x1+a22x2+···+a2nxn(或≤,=)b2
 ··· ··· 
 am1x1+am2x2+···+amnxn(或≤,=)bm
 x1,x2,···,xn≥0

20、线性规划的标准形式:

min c1x1+c2x2+···+cnxn
s.t
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值