空洞卷积Dilated/Atrous Convolution

本文解析了空洞卷积的概念,如何通过在卷积核中插入零来扩大感受野,保持分辨率并捕获多尺度上下文。它在图像分割和目标检测中的优势及实际挑战,包括计算效率问题和优化难题。
部署运行你感兴趣的模型镜像

空洞卷积Dilated/Atrous Convolution

卷积还没学好,又来一个空洞卷积,慢慢积累吧 o(╥﹏╥)o

空洞卷积广泛应用在语义分割与目标检测等任务中

为什么需要空洞卷积?

以图像分割领域为例,图像输入到CNN中,传统做法就是做卷积再pooling,降低图像尺寸的同时,增大感受野,但是这种方法会导致分辨率下降,会造成一些信息损失

什么是空洞卷积?

image-20220311150144919image-20220311150259248

img

就是在普通的卷机基础上,卷积核中间填充0 ,且有两种方法,第一,卷积核填充0,第二 ,输入等间距采样

上面两个图都是第二种方法,第二个图可以看到,

空洞卷积的作用
  • **扩大感受野 ** 空洞卷积感受野大了可以检测到更大的目标,不损失分辨率可以更精确的定位目标

  • 捕获多尺度上下文信息:空洞卷积可以设置dilation rate, 作用是在卷积核中填充dilation rate-1个0,因此,当设置不同的dilation rate时感受野就会不一样,也即获取了多尺度信息

空洞卷积虽然有这么多优点,但在实际中不好优化,速度会大大折扣。

计算问题

以conv size= k*k ,dilation rate = n

就是在卷积核的每两个数字间这塞进入 n-1 个 0

感受野 = (k-1) * n +1 或者 k + (k-1) * (n-1)

感受野卷积核扩张后的大小,并将空位置填充0

image-20220311154211621

您可能感兴趣的与本文相关的镜像

Yolo-v5

Yolo-v5

Yolo

YOLO(You Only Look Once)是一种流行的物体检测和图像分割模型,由华盛顿大学的Joseph Redmon 和Ali Farhadi 开发。 YOLO 于2015 年推出,因其高速和高精度而广受欢迎

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

simpsun

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值