在训练机器学习模型的过程中,解决High bias 和High variance 的过程:
是否存在High bias ?
- 增加网络结构,如增加隐藏层数目;
- 训练更长时间;
- 寻找合适的网络架构,使用更大的NN结构;
是否存在High variance?
- 获取更多的数据;
- 正则化( regularization);
- 寻找合适的网络结构;
在大数据时代,深度学习对监督式学习大有裨益,使得我们不用像以前一样太过关注如何平衡偏差和方差的权衡问题,通过以上方法可以使得再不增加另一方的情况下减少一方的值。