第一课.极大似然估计与有偏性无偏性

极大似然估计

问题背景

以高斯分布引出问题,高斯分布的重要性体现于:

  • 1.根据中心极限定理,当样本量足够大的时候,任意分布的均值都趋近于一个高斯分布,高斯分布具有工程应用的普适性;
  • 2.高斯分布是许多模型的基础,比如线性高斯模型(卡尔曼滤波器),高斯过程等;

假设有一组观测到的样本数据 X = ( x 1 , x 2 , . . . , x N ) X=(x_{1},x_{2},...,x_{N}) X=(x1,x2,...,xN),他们服从参数 θ = ( μ , σ 2 ) \theta=(\mu,\sigma^{2}) θ=(μ,σ2)的一元高斯分布,可以使用极大似然估计得到高斯分布的参数,首先回顾一元高斯分布概率密度函数的表达:
p ( x ) = 1 2 π σ 2 e x p ( − ( x − μ ) 2 2 σ 2 ) p(x)=\frac{1}{\sqrt{2\pi\sigma^{2}}}exp(-\frac{(x-\mu)^{2}}{2\sigma^{2}}) p(x)=2πσ2 1exp(2σ2(xμ)2)
极大似然估计(Maximum Likelihood Estimation,简称mle)的本质是估计参数 θ \theta θ,使得所观测样本 X X X出现的概率最大;此处需要熟悉一种数学格式 p ( x ∣ θ ) p(x|\theta) p(xθ),指的是明确了参数 θ \theta θ情况下,服从高斯分布的样本 x x x出现的概率,事实上,这个格式的写法和概率密度一致:
p ( x ∣ θ ) = 1 2 π σ 2 e x p ( − ( x − μ ) 2 2 σ 2 ) p(x|\theta)=\frac{1}{\sqrt{2\pi\sigma^{2}}}exp(-\frac{(x-\mu)^{2}}{2\sigma^{2}}) p(xθ)=2πσ2 1exp(2σ2(xμ)2)

极大似然估计的计算方法

假设样本 X = ( x 1 , x 2 , . . . , x N ) X=(x_{1},x_{2},...,x_{N}) X=(x1,x2,...,xN)中每个样本 x i x_{i} xi都是独立同分布的,即满足同一个高斯分布,且彼此间相互独立,则极大似然的优化目标可以写为:
m a x θ p ( X ∣ θ ) = m a x θ ∏ i = 1 N p ( x i ∣ θ ) max_{\theta}p(X|\theta)=max_{\theta}\prod_{i=1}^{N}p(x_{i}|\theta) maxθp(Xθ)=maxθi=1Np(xiθ)
取对数可以将乘积转为求和:
l o g ( p ( X ∣ θ ) ) = ∑ i = 1 N l o g ( p ( x i ∣ θ ) ) = ∑ i = 1 N l o g ( 1 2 π σ 2 e x p ( − ( x i − μ ) 2 2 σ 2 ) ) = ∑ i = 1 N [ l o g 1 2 π + l o g 1 σ − ( x i − μ ) 2 2 σ 2 ] log(p(X|\theta))=\sum_{i=1}^{N}log(p(x_{i}|\theta))=\sum_{i=1}^{N}log(\frac{1}{\sqrt{2\pi\sigma^{2}}}exp(-\frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}))=\sum_{i=1}^{N}[log\frac{1}{\sqrt{2\pi}}+log\frac{1}{\sigma}-\frac{(x_{i}-\mu)^{2}}{2\sigma^{2}}] log(p(Xθ))=i=1Nlog(p(xiθ))=i=1Nlog(2πσ2 1exp(2σ2(xiμ)2))=i=1N[log2π 1+logσ12σ2(xiμ)2]
对上式求偏导,解出偏导为0的根即得到参数的取值:
μ m l e = 1 N ∑ i = 1 N x i \mu_{mle}=\frac{1}{N}\sum_{i=1}^{N}x_{i} μmle=N1i=1Nxi
可以看出,样本的均值就是高斯分布参数 μ \mu μ的极大似然估计值;

同样的方式得到:
σ m l e 2 = 1 N ∑ i = 1 N ( x i − μ m l e ) 2 \sigma^{2}_{mle}=\frac{1}{N}\sum_{i=1}^{N}(x_{i}-\mu_{mle})^{2} σmle2=N1i=1N(xiμmle)2

参数估计的有偏性和无偏性

通过极大似然估计的参数是否与模型参数真实值存在差距,如何衡量它们是一个问题,所以引入无偏估计的概念:如果估计量的期望等于被估计量的真实值,则称估计值满足无偏性;

对于上面的高斯分布参数估计,进行无偏性的检验,先从均值的估计值考虑,计算 μ m l e \mu_{mle} μmle的期望:
E [ μ m l e ] = E [ 1 N ∑ i = 1 N x i ] = 1 N ∑ i = 1 N E [ x i ] = 1 N ∑ i = 1 N μ = μ E[\mu_{mle}]=E[\frac{1}{N}\sum_{i=1}^{N}x_{i}]=\frac{1}{N}\sum_{i=1}^{N}E[x_{i}]=\frac{1}{N}\sum_{i=1}^{N}\mu=\mu E[μmle]=E[N1i=1Nxi]=N1i=1NE[xi]=N1i=1Nμ=μ
可以得到, E [ μ m l e ] = μ E[\mu_{mle}]=\mu E[μmle]=μ,即估计值的期望等于模型参数的真实值,因此,均值的极大似然估计 μ m l e \mu_{mle} μmle是无偏估计;

然后,检验方差估计的无偏性,首先对表达式变形:
σ m l e 2 = 1 N ∑ i = 1 N ( x i − μ m l e ) 2 = 1 N ∑ i = 1 N ( x i 2 − 2 x i μ m l e + μ m l e 2 ) = 1 N ∑ i = 1 N x i 2 + 1 N ∑ i = 1 N μ m l e 2 − 2 μ m l e 1 N ∑ i = 1 N x i \sigma^{2}_{mle}=\frac{1}{N}\sum_{i=1}^{N}(x_{i}-\mu_{mle})^{2}=\frac{1}{N}\sum_{i=1}^{N}(x_{i}^{2}-2x_{i}\mu_{mle}+\mu_{mle}^{2})=\frac{1}{N}\sum_{i=1}^{N}x_{i}^{2}+\frac{1}{N}\sum_{i=1}^{N}\mu_{mle}^{2}-2\mu_{mle}\frac{1}{N}\sum_{i=1}^{N}x_{i} σmle2=N1i=1N(xiμmle)2=N1i=1N(xi22xiμmle+μmle2)=N1i=1Nxi2+N1i=1Nμmle22μmleN1i=1Nxi
发现 1 N ∑ i = 1 N x i \frac{1}{N}\sum_{i=1}^{N}x_{i} N1i=1Nxi就是 μ m l e \mu_{mle} μmle,所以进行替换:
σ m l e 2 = 1 N ∑ i = 1 N x i 2 + 1 N ∑ i = 1 N μ m l e 2 − 2 μ m l e 1 N ∑ i = 1 N x i = 1 N ∑ i = 1 N x i 2 + μ m l e 2 − 2 μ m l e 2 = 1 N ∑ i = 1 N x i 2 − μ m l e 2 \sigma_{mle}^{2}=\frac{1}{N}\sum_{i=1}^{N}x_{i}^{2}+\frac{1}{N}\sum_{i=1}^{N}\mu_{mle}^{2}-2\mu_{mle}\frac{1}{N}\sum_{i=1}^{N}x_{i}=\frac{1}{N}\sum_{i=1}^{N}x_{i}^{2}+\mu_{mle}^{2}-2\mu_{mle}^{2}=\frac{1}{N}\sum_{i=1}^{N}x_{i}^{2}-\mu_{mle}^{2} σmle2=N1i=1Nxi2+N1i=1Nμmle22μmleN1i=1Nxi=N1i=1Nxi2+μmle22μmle2=N1i=1Nxi2μmle2
因此,得到:
E [ σ m l e 2 ] = E [ 1 N ∑ i = 1 N x i 2 − μ m l e 2 ] = E [ 1 N ∑ i = 1 N x i 2 − μ 2 − ( μ m l e 2 − μ 2 ) ] = E [ 1 N ∑ i = 1 N x i 2 − μ 2 ] − E [ μ m l e 2 − μ 2 ] E[\sigma_{mle}^{2}]=E[\frac{1}{N}\sum_{i=1}^{N}x_{i}^{2}-\mu_{mle}^{2}]=E[\frac{1}{N}\sum_{i=1}^{N}x_{i}^{2}-\mu^{2}-(\mu_{mle}^{2}-\mu^{2})]=E[\frac{1}{N}\sum_{i=1}^{N}x_{i}^{2}-\mu^{2}]-E[\mu_{mle}^{2}-\mu^{2}] E[σmle2]=E[N1i=1Nxi2μmle2]=E[N1i=1Nxi2μ2(μmle2μ2)]=E[N1i=1Nxi2μ2]E[μmle2μ2]
对于第一项 E [ 1 N ∑ i = 1 N x i 2 − μ 2 ] E[\frac{1}{N}\sum_{i=1}^{N}x_{i}^{2}-\mu^{2}] E[N1i=1Nxi2μ2]
E [ 1 N ∑ i = 1 N x i 2 − μ 2 ] = E [ 1 N ∑ i = 1 N x i 2 − 1 N ∑ i = 1 N μ 2 ] = 1 N E [ ∑ i = 1 N ( x i 2 − μ 2 ) ] = 1 N ∑ i = 1 N E [ ( x i 2 − μ 2 ) ] E[\frac{1}{N}\sum_{i=1}^{N}x_{i}^{2}-\mu^{2}]=E[\frac{1}{N}\sum_{i=1}^{N}x_{i}^{2}-\frac{1}{N}\sum_{i=1}^{N}\mu^{2}]=\frac{1}{N}E[\sum_{i=1}^{N}(x_{i}^{2}-\mu^{2})]=\frac{1}{N}\sum_{i=1}^{N}E[(x_{i}^{2}-\mu^{2})] E[N1i=1Nxi2μ2]=E[N1i=1Nxi2N1i=1Nμ2]=N1E[i=1N(xi2μ2)]=N1i=1NE[(xi2μ2)]
注意到:
E [ ( x i 2 − μ 2 ) ] = E [ x i 2 ] − μ 2 = E [ x i 2 ] − E [ x i ] 2 = v a r ( x i ) = σ 2 E[(x_{i}^{2}-\mu^{2})]=E[x_{i}^{2}]-\mu^{2}=E[x_{i}^{2}]-E[x_{i}]^{2}=var(x_{i})=\sigma^{2} E[(xi2μ2)]=E[xi2]μ2=E[xi2]E[xi]2=var(xi)=σ2
所以:
E [ 1 N ∑ i = 1 N x i 2 − μ 2 ] = 1 N ∑ i = 1 N E [ ( x i 2 − μ 2 ) ] = σ 2 E[\frac{1}{N}\sum_{i=1}^{N}x_{i}^{2}-\mu^{2}]=\frac{1}{N}\sum_{i=1}^{N}E[(x_{i}^{2}-\mu^{2})]=\sigma^{2} E[N1i=1Nxi2μ2]=N1i=1NE[(xi2μ2)]=σ2
处理第二项 E [ μ m l e 2 − μ 2 ] E[\mu_{mle}^{2}-\mu^{2}] E[μmle2μ2]
E [ μ m l e 2 − μ 2 ] = E [ μ m l e 2 ] − E [ μ 2 ] = E [ μ m l e 2 ] − μ 2 E[\mu_{mle}^{2}-\mu^{2}]=E[\mu_{mle}^{2}]-E[\mu^{2}]=E[\mu_{mle}^{2}]-\mu^{2} E[μmle2μ2]=E[μmle2]E[μ2]=E[μmle2]μ2
之前已经证明,均值的极大似然估计是无偏的,因此 μ = E [ μ m l e ] \mu=E[\mu_{mle}] μ=E[μmle],因此可以替换得到:
E [ μ m l e 2 ] − μ 2 = E [ μ m l e 2 ] − E [ μ m l e ] 2 = v a r ( μ m l e ) = v a r ( 1 N ∑ i = 1 N x i ) = 1 N σ 2 E[\mu_{mle}^{2}]-\mu^{2}=E[\mu_{mle}^{2}]-E[\mu_{mle}]^{2}=var(\mu_{mle})=var(\frac{1}{N}\sum_{i=1}^{N}x_{i})=\frac{1}{N}\sigma^{2} E[μmle2]μ2=E[μmle2]E[μmle]2=var(μmle)=var(N1i=1Nxi)=N1σ2
合并结果:
E [ σ m l e 2 ] = σ 2 − 1 N σ 2 = N − 1 N σ 2 E[\sigma_{mle}^{2}]=\sigma^{2}-\frac{1}{N}\sigma^{2}=\frac{N-1}{N}\sigma^{2} E[σmle2]=σ2N1σ2=NN1σ2
方差的极大似然估计值的期望不等于真实值,所以是有偏的,为了变成无偏,需要进行修正:
σ ^ 2 = N N − 1 σ m l e 2 = 1 N − 1 ∑ i = 1 N ( x i − μ m l e ) 2 \widehat{\sigma}^{2}=\frac{N}{N-1}\sigma_{mle}^{2}=\frac{1}{N-1}\sum_{i=1}^{N}(x_{i}-\mu_{mle})^{2} σ 2=N1Nσmle2=N11i=1N(xiμmle)2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值