在语音识别技术的飞速发展中,开源工具以其灵活性和成本效益,为开发者和研究者提供了宝贵的资源。本文将深入对比五款基于HMM和N-gram模型的开源语音识别工具:CMUSphinx,Kaldi,HTK,Julius和ISIP,同时也会探讨一些基于深度学习的工具,如Mozilla DeepSpeech、Whisper和Flashlight ASR,旨在为开发者提供一个选择和使用的综合指南。
1. 编程语言支持
编程语言是选择工具的重要因素。CMUSphinx、Kaldi、HTK和Julius支持Python,而ISIP仅支持C++。CMUSphinx还额外支持Java、C等。Python版本可能不包含所有功能,而某些功能可能专为特定语言设计。深度学习工具如Mozilla DeepSpeech和Whisper则更倾向于Python。
2. 开发者活跃度
CMUSphinx源于卡内基梅隆大学,有着20年的历史,活跃于GitHub和SourceForge。Kaldi,由2009年的研讨会催生,有121位贡献者。HTK,起源于剑桥大学,虽然更新较慢,但其学术背景深厚。Julius,专注日语,开发活跃度在2016年。ISIP,教育用途为主,其邮件列表已不可用。Mozilla DeepSpeech和Whisper则分别由Mozilla和OpenAI维护,社区活跃度高。
3. 社区活跃度
CMUSphinx的论坛活跃,但存在重复的repository。Kaldi提供多种交互方式,包括邮件、论坛和GitHub。HTK有邮件列表但无公开repository。J