2018南京航天航空大学820自动控制原理第九题

2021.11.7修改
在这里插入图片描述
1.系统 M ( s ) M(s) M(s)的状态空间方程:
{ x ˙ 1 = − 4 x ˙ 1 + u y = x ˙ 1 \left\{\begin{array}{l} \boldsymbol{\dot x_1} = -4 \boldsymbol{\dot x_1} + \boldsymbol u \\ \boldsymbol{y} = \boldsymbol{\dot x_1} \end{array}\right. {x˙1=4x˙1+uy=x˙1
系统 N ( s ) N(s) N(s)的状态空间方程:
{ [ x ˙ 2 x ˙ 3 ] = [ − 3 0 0 − 2 ] [ x 2 x 3 ] + [ 1 1 ] u y = [ − 2 4 ] x \xcancel{\left\{\begin{array}{l} \begin{bmatrix}\boldsymbol{\dot x_2} \\ \boldsymbol{\dot x_3} \end{bmatrix} = \begin{bmatrix} -3 & 0 \\ 0 &-2\end{bmatrix} \begin{bmatrix}\boldsymbol{x_2} \\ \boldsymbol{x_3}\end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \boldsymbol u \\ \boldsymbol y = \begin{bmatrix} -2 & 4 \end{bmatrix} \boldsymbol x \end{array}\right.} [x˙2x˙3]=[3002][x2x3]+[11]uy=[24]x
{ [ x ˙ 2 x ˙ 3 ] = [ 0 1 − 6 − 5 ] [ x 2 x 3 ] + [ 0 1 ] u y = [ 8 2 ] x \left\{ \begin{array}{l} \begin{bmatrix} \boldsymbol{\dot x_2} \\ \boldsymbol{\dot x_3} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -6 & -5 \end{bmatrix} \begin{bmatrix} \boldsymbol{x_2} \\ \boldsymbol{x_3} \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} \boldsymbol u \\ \boldsymbol y = \begin{bmatrix} 8 & 2 \end{bmatrix} \boldsymbol x \end{array}\right. [x˙2x˙3]=[0615][x2x3]+[01]uy=[82]x
两个子系统串联,存在零极点对消,系统不能控。系统串联后的状态空间方程
{ x ˙ = [ − 4 − 2 4 0 − 3 0 0 0 − 2 ] x + [ 0 1 1 ] u y = [ 1 0 0 ] x \xcancel{\left\{\begin{array}{l} \boldsymbol{\dot x} = \begin{bmatrix} -4 & -2 & 4 \\ 0 & -3 & 0 \\ 0 & 0 & -2 \end{bmatrix} \boldsymbol x + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \boldsymbol u \\ \boldsymbol y= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \boldsymbol x \end{array}\right.} x˙=400230402x+011uy=[100]x
{ x ˙ = [ − 4 8 2 0 0 1 0 − 6 − 5 ] x + [ 0 0 1 ] u y = [ 1 0 0 ] x \left\{ \begin{array}{l} \boldsymbol{\dot x} = \begin{bmatrix} -4 & 8 & 2 \\ 0 & 0 & 1 \\ 0 & -6 & -5 \end{bmatrix} \boldsymbol x + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \boldsymbol u \\ \boldsymbol y= \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} \boldsymbol x \end{array} \right. x˙=400806215x+001uy=[100]x
系统能控性矩阵
Q c = [ B A B A 2 B ] = [ 0 2 − 10 0 1 − 5 1 − 5 19 ] \boldsymbol{Q_c}= \begin{bmatrix} \boldsymbol{B} & \boldsymbol{AB} & \boldsymbol{A}^2\boldsymbol{B} \end{bmatrix}= \begin{bmatrix} 0 & 2 & -10 \\ 0 & 1 & -5 \\ 1 & -5 & 19 \end{bmatrix} Qc=[BABA2B]=00121510519
rank Q c = 2 \text{rank}\boldsymbol{Q_c}=2 rankQc=2,不满秩,系统不能控。
2.系统的单位阶跃响应近似为一个调节时间 t s t_s ts 4.75 s 4.75s 4.75s的临界阻尼系统,即系统存在两个相同的极点,可得
t s = 4 ξ ω n = 4.75 s \xcancel{t_s=\frac{4}{\xi\omega_n}=4.75s} ts=ξωn4=4.75s
解得
s 1 , 2 = 0.8421 \xcancel{s_{1,2}=0.8421} s1,2=0.8421
由1可知,系统状态 x 1 x_1 x1不能控,设状态反馈后系统的特征方程为
Δ ∗ ( s ) = ( s + 0.8421 ) 2 = s 2 + 1.6842 s + 0.70913241 \xcancel{\begin{aligned} \Delta^*(s) & =(s+0.8421)^2 \\ & = s^2 + 1.6842s + 0.70913241 \end{aligned}} Δ(s)=(s+0.8421)2=s2+1.6842s+0.70913241
设状态反馈矩阵为 K = [ K 1 K 2 ] \sout{\boldsymbol K = \begin{bmatrix}K_1 & K_2 \end{bmatrix}} K=[K1K2],对应系统的特征多项式为
Δ = d e t [ s I − ( A − B K ) ] = ( s + 3 + K 1 ) ( s + 2 + K 2 ) − K 1 K 2 = s 2 + ( 5 + K 1 + K 2 ) s + 6 + 2 K 1 + 3 K 2 \xcancel{\begin{aligned} \Delta &= det[s\boldsymbol{I} - (\boldsymbol{A} - \boldsymbol{B}\boldsymbol{K})] \\ & = (s+3+K_1)(s+2+K_2) - K_1 K_2 \\ & = s^2 + (5 + K_1 + K_2)s + 6 + 2K_1 + 3K_2 \end{aligned}} Δ=det[sI(ABK)]=(s+3+K1)(s+2+K2)K1K2=s2+(5+K1+K2)s+6+2K1+3K2
对比两式可解得
{ K 1 = − 4.6565321 K 2 = 1.34073241 \xcancel{\left\{\begin{array}{l} K_1 = -4.6565321 \\ K_2 = 1.34073241 \end{array}\right.} {K1=4.6565321K2=1.34073241

取线性变换矩阵为
P = [ 0 2 1 0 1 0 1 − 5 0 ] \boldsymbol{P}= \begin{bmatrix} 0 & 2 & 1 \\ 0 & 1 & 0 \\ 1 & -5 & 0 \end{bmatrix} P=001215100
线性变化后,系统的状态空间方程为
{ x ˉ ˙ = [ 0 − 6 0 1 − 5 0 0 0 − 4 ] x ˉ + [ 1 0 0 ] u y = [ 0 2 1 ] x ˉ \left\{ \begin{array}{l} \boldsymbol{\dot{\bar{x}}} = \begin{bmatrix} 0 & -6 & 0 \\ 1 & -5 & 0 \\ 0 & 0 & -4 \end{bmatrix} \boldsymbol{\bar{x}} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} \boldsymbol u \\ \boldsymbol y= \begin{bmatrix} 0 & 2 & 1 \end{bmatrix} \boldsymbol{\bar{x}} \end{array} \right. xˉ˙=010650004xˉ+100uy=[021]xˉ
系统的单位阶跃响应近似为一个调节时间 t s t_s ts 4.75 s 4.75s 4.75s的临界阻尼系统,即系统存在两个相同的极点,由临界阻尼二阶系统的调试时公式 t s = 4.75 T 1 t_s=4.75T_1 ts=4.75T1可知, T 1 = 1 T_1=1 T1=1。由线性变换后系统的状态空间方程可知,状态 − 4 -4 4不可控,设变换后状态反馈矩阵为
K ˉ = [ k 1 k 2 0 ] \boldsymbol{\bar{K}}= \begin{bmatrix} k_1 & k_2 & 0 \end{bmatrix} Kˉ=[k1k20]
闭环特征方程为
Δ ( s ) = ( s + 4 ) [ s 2 + ( k 1 + 5 ) s + 5 k 1 + k 2 + 6 ] \begin{aligned} \Delta(s)=(s+4)[s^2+(k_1+5)s+5k_1+k_2+6] \end{aligned} Δ(s)=(s+4)[s2+(k1+5)s+5k1+k2+6]
由于状态 − 4 -4 4不可控,则期望闭环特征方程为
Δ ∗ ( s ) = ( s + 4 ) ( s 2 + 2 s + 1 ) \Delta^*(s)=(s+4)(s^2+2s+1) Δ(s)=(s+4)(s2+2s+1)
对比两式可解得
k 1 = − 3 , k 2 = 10 k_1=-3,\quad k_2=10 k1=3,k2=10
状态 − 4 -4 4不可控,设状态反馈矩阵为
K = K ˉ P − 1 = [ 0 − 5 − 3 ] \boldsymbol{K}=\boldsymbol{\bar{K}}\boldsymbol{P}^{-1}= \begin{bmatrix} 0 & -5 & -3 \end{bmatrix} K=KˉP1=[053]
3.系统的能观性矩阵为
Q o = [ 1 0 0 − 4 − 2 4 16 14 − 24 ] \xcancel{\boldsymbol Q_o = \begin{bmatrix} 1 & 0 & 0 \\ -4 & -2 & 4 \\ 16 & 14 & -24 \end{bmatrix}} Qo=141602140424
Q o = [ 1 0 0 − 4 8 2 16 − 44 − 10 ] \boldsymbol Q_o = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 8 & 2 \\ 16 & -44 & -10 \end{bmatrix} Qo=141608440210
r a n k Q o = 3 rank\boldsymbol Q_o =3 rankQo=3,满秩,系统完全能观,可以任意配置极点调节状态观测器的动态性能。将其中两个主导极点设置为 s 1 , 2 = − 0.8421 \sout{s_{1,2}=-0.8421} s1,2=0.8421 s 1 , 2 = − 1 s_{1,2}=-1 s1,2=1,第三个极点要远离主导极点,实部的模比主导极点实部的模大三倍以上,可设为 s 3 = − 5 s_3=-5 s3=5

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值