arxiv: https://arxiv.org/abs/2305.14992
问题背景:当前LLM推理受到几个关键因素的限制:
(1)LLM缺乏世界模型(一种人类就有的对环境的心理表征,可以模拟行动以及活动对外部世界状态的影响)去预测世界状态和模拟执行动作产生的长期结果影响,从而导致规划能力和执行动作能力不足。
(2)缺乏奖励机制来评估和引导推理走向理想状态。
(3)无法平衡探索(未访问过的节点)与利用(访问过的节点),从而无法有效地探索广阔的推理空间。
本文方法概述:提出RAP(Resoning via Planning)框架,让LLM能够以接近人类意识规划的方式进行推理。RAP通过世界模型增强LLM,并通过有指导准则的规划进行推理,让后续产生有高奖励值的推理路径。
本文方法框架:
语言模型作为世界模型
- 用自然语言在prompt中定义状态和动作。
- 根据定义的状态和动作,将推理过程描述为马尔可夫过程(MDP)。
奖励设计
- 动作的log概率作为奖励。
- 采样多次世界模型的答案,使用生成最多的答案比例作为置信度。根据当前状态下得到的置信度会作为奖励。
- 让LLM自己去评估结果。(LLM识别推理错误,要比避免在生成中产生错误更容易)
- 根据特定任务可以启发式的插入就爱你老公i函数。
采用蒙特卡洛树搜索进行规划
- MCTS迭代式的构建了一颗搜索树,节点代表状态,边代表活动和在当前状态下应用动作生成下一个状态的过渡。
- 选择
使用上限置信界限(UCT)去选择节点,来平衡探索(未访问的节点)和利用(访问过的高价值的节点)
其中N(s)是节点s在之前的迭代中被访问的次数,c(s,a)是状态s下进行动作a的子节点。之前访问的子节点越少(即该子节点的不确定性越高),方程中第二项就越高。权重w控制着探索和里用的平衡。当w为0时,退化为贪心搜索方式。当w不为0时,若某一条路径经常被选择, 会逐渐减小未来会产生的收益增益,让LLM对探索较少的路径进行探索。
- 扩展
当节点不为终端节点的时候,将根据叶结点的状态,使用LLM对d个可能的动作进行采样,然后使用LLM预测各自的下一个状态,从而产生新的子节点,直至达到叶子结点为止。 - 反向传播
当达到叶结点时候进行反向传播。 - 构架完成进行推理
达到预订MCTS的迭代次数,则终止算法并从构建的树中选择最终的推理轨迹进行评估。选择方式有两种;1)从根节点开始,每次选择Q值最高的动作,直到达到终端叶子结点。2)从生成高奖励的迭代中选择路径,或者选择访问次数最多的叶结点。本文在实践中发现方法二效果更好。 - 路径融合
RAP可以从不同的MCTS迭代中产生多个轨迹和答案,这些轨迹和答案将聚合形成最终的答案。但是,像规划生成、逻辑推理的问题需要完整的推理轨迹作为输出,这一类不会被使用路径融合。
实验情况
- 实验场景:规划生成、数学推理问题、逻辑推理
- 实验设置:基座模型Llama-33B、temperature=0.8
- 基线方法:COT、Least-to-Most、Self-Consistency(SC)
- 实验效果:
-
规划生成
- 采用Blocksworld数据集,该数据集主要用于让Agent移动不同颜色的方块,达到目标要求。
- 采用Blocksworld数据集,该数据集主要用于让Agent移动不同颜色的方块,达到目标要求。
-
数学推理
- 采用GSM8K数据集
- 采用GSM8K数据集
-
逻辑推理
- 采用PrOntoQA数据集,提供一组事实和逻辑规则,模型需要基于事实应用逻辑规则,来验证事实的真假。
-