【Preference Learning】Reasoning with Language Model is Planning with World Model

arxiv: https://arxiv.org/abs/2305.14992

问题背景:当前LLM推理受到几个关键因素的限制:

(1)LLM缺乏世界模型(一种人类就有的对环境的心理表征,可以模拟行动以及活动对外部世界状态的影响)去预测世界状态和模拟执行动作产生的长期结果影响,从而导致规划能力和执行动作能力不足。

(2)缺乏奖励机制来评估和引导推理走向理想状态。

(3)无法平衡探索(未访问过的节点)与利用(访问过的节点),从而无法有效地探索广阔的推理空间。

本文方法概述:提出RAP(Resoning via Planning)框架,让LLM能够以接近人类意识规划的方式进行推理。RAP通过世界模型增强LLM,并通过有指导准则的规划进行推理,让后续产生有高奖励值的推理路径。

本文方法框架:

语言模型作为世界模型

  • 用自然语言在prompt中定义状态和动作。
  • 根据定义的状态和动作,将推理过程描述为马尔可夫过程(MDP)。

奖励设计

  • 动作的log概率作为奖励。
  • 采样多次世界模型的答案,使用生成最多的答案比例作为置信度。根据当前状态下得到的置信度会作为奖励。
  • 让LLM自己去评估结果。(LLM识别推理错误,要比避免在生成中产生错误更容易)
  • 根据特定任务可以启发式的插入就爱你老公i函数。

采用蒙特卡洛树搜索进行规划

  • MCTS迭代式的构建了一颗搜索树,节点代表状态,边代表活动和在当前状态下应用动作生成下一个状态的过渡。
  • 选择
    使用上限置信界限(UCT)去选择节点,来平衡探索(未访问的节点)和利用(访问过的高价值的节点)
    在这里插入图片描述

其中N(s)是节点s在之前的迭代中被访问的次数,c(s,a)是状态s下进行动作a的子节点。之前访问的子节点越少(即该子节点的不确定性越高),方程中第二项就越高。权重w控制着探索和里用的平衡。当w为0时,退化为贪心搜索方式。当w不为0时,若某一条路径经常被选择, 会逐渐减小未来会产生的收益增益,让LLM对探索较少的路径进行探索。

  • 扩展
    当节点不为终端节点的时候,将根据叶结点的状态,使用LLM对d个可能的动作进行采样,然后使用LLM预测各自的下一个状态,从而产生新的子节点,直至达到叶子结点为止。
  • 反向传播
    当达到叶结点时候进行反向传播。
  • 构架完成进行推理
    达到预订MCTS的迭代次数,则终止算法并从构建的树中选择最终的推理轨迹进行评估。选择方式有两种;1)从根节点开始,每次选择Q值最高的动作,直到达到终端叶子结点。2)从生成高奖励的迭代中选择路径,或者选择访问次数最多的叶结点。本文在实践中发现方法二效果更好。
  • 路径融合
    RAP可以从不同的MCTS迭代中产生多个轨迹和答案,这些轨迹和答案将聚合形成最终的答案。但是,像规划生成、逻辑推理的问题需要完整的推理轨迹作为输出,这一类不会被使用路径融合。

实验情况

  • 实验场景:规划生成、数学推理问题、逻辑推理
  • 实验设置:基座模型Llama-33B、temperature=0.8
  • 基线方法:COT、Least-to-Most、Self-Consistency(SC)
  • 实验效果:
    • 规划生成

      • 采用Blocksworld数据集,该数据集主要用于让Agent移动不同颜色的方块,达到目标要求。
        在这里插入图片描述
        在这里插入图片描述
    • 数学推理

      • 采用GSM8K数据集
        在这里插入图片描述
    • 逻辑推理

      • 采用PrOntoQA数据集,提供一组事实和逻辑规则,模型需要基于事实应用逻辑规则,来验证事实的真假。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辰阳星宇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值