《机器学习实践》第五章Logistic回归,数学推导详细过程

本文详述逻辑回归中的sigmoid函数,解释其在概率输出中的作用,并介绍Logistic分布。通过数学推导,讲解如何将线性函数转化为概率模型,以及如何使用极大似然估计法估计模型参数。涉及梯度上升法和链式求导的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

逻辑回归的知识,其中主要是数学推导过程,参考CS229,提供给数学要求比较高的人,而且内容详细,适合小白,像我这样的,数学绝缘体。

1.sigmoid函数

在分类过程中,我们使用了感知机,将样本分成了两类,使用的分类函数是sign,但是sign函数只能讲数据粗暴的分为+1和-1,其实是不太符合事实的,所以采用sigmoid函数,这个函数是平滑的,任何一个地方导数都不会为零,也不会产生突变,而且将所有的数据都映射在[0,1]范围之内,适合做概率输出。

2.Logistic分布 

  为位置参数,γ>0为形状参数 。式子6-1是logistic分布函数,式子6-2是logistic密度函数,也就是导数函数。

3.logistic回归模型

 一个数发生的概率为p,则几率(odds)是发生概率与不发生的概率之比,也就是 ,如果加上对数,那就是对数几率,   对于logistic回归模型就是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

种豆得瓜er

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值