视觉SLAM十四讲理论与实践习题(二)

2 熟悉Eigen矩阵运算
  1. x x x有解且唯一 ⇔ \Leftrightarrow r ( A ) = r ( A ∣ b ) = n r(A)=r(A|b)=n r(A)=r(Ab)=n
  2. 首先,将方程组未知数系数通过消元变换为上三角矩阵。
    其次,使用回带法,根据上三角矩阵特点,得出方程的解
  3. QR方法是用于求解矩阵所有特征值的算法,QR分解就是把矩阵分解成一个正交矩阵和一个上三角矩阵。
  4. Cholesky 分解是把一个对称正定的矩阵表示成一个下三角矩阵L和其转置的乘积的分解。它要求矩阵的所有特征值必须大于零,故分解的下三角的对角元也是大于零的。Cholesky分解法又称平方根法,是当A为实对称正定矩阵时,LU三角分解法的变形。
#include <iostream>

using namespace std;

#include <ctime>
// Eigen 核心部分
#include <Eigen/Core>
// 稠密矩阵的代数运算(逆,特征值等)
#include <Eigen/Dense>

using namespace Eigen;

#define MATRIX_SIZE 100

int main(int argc, char** argv) {
    Matrix<double, Dynamic, Dynamic> matrix_NN
        = MatrixXd::Random(MATRIX_SIZE, MATRIX_SIZE);
    matrix_NN = matrix_NN * matrix_NN.transpose();  // 保证半正定
    Matrix<double, Dynamic, 1> v_Nd = MatrixXd::Random(MATRIX_SIZE, 1);
    VectorXd x(100);

    // 通常用矩阵分解来求,例如QR分解,速度会快很多
    x = matrix_NN.colPivHouseholderQr().solve(v_Nd);
    cout << "x = " << x.transpose() << endl;

    return 0;
}
3 几何运算练习
#include <iostream>
#include <vector>

#include <algorithm>

#include <Eigen/Core>
#include <Eigen/Geometry>

using namespace std;
using namespace Eigen;

int main(int argc, char** argv) {
    Quaterniond q1(0.55, 0.3, 0.2, 0.2), q2(-0.1, 0.3, -0.7, 0.2);
    q1.normalize();
    q2.normalize();
    Vector3d t1(0.7,1.1,0.2),t2(-0.1,0.4,0.8);
    Vector3d p1(0.5,-0.1,0.2);

    Isometry3d T1w(q1),T2w(q2);

    T1w.pretranslate(t1);
    T2w.pretranslate(t2);

    Vector3d p2=T2w*T1w.inverse()*p1;
    cout<<endl<<p2.transpose()<<endl;

    return 0;
}

在这里插入图片描述

  1. 前置知识:
  • 单位正交基
  • 向量的坐标:设 η 1 , η 2 , . . . η k {\eta _1},{\eta _2},{...\eta _k} η1,η2,...ηk V V V的一个基,则 V V V的每个元素 α \alpha α都可以用 η 1 , η 2 , . . . η k {\eta _1},{\eta _2},{...\eta _k} η1,η2,...ηk唯一线性表示:
    α = c 1 η 1 + c 2 η 2 + . . . + c k η k \alpha = c_1{\eta _1}+c_2{\eta _2}+{...+c_k\eta _k} α=c1η1+c2η2+...+ckηk
    称其中的系数 c 1 , c 2 , . . . , c k c_1,c_2,...,c_k c1,c2,...,ck α \alpha α关于基 η 1 , η 2 , . . . η k {\eta _1},{\eta _2},{...\eta _k} η1,η2,...ηk的坐标,它是一个 k k k维向量。
  • 正交矩阵: A A T = I AA^T=I AAT=I
    在这里插入图片描述
    R R T = I RR^T=I RRT=I两边取行列式,有 ∣ R ∣ 2 = 1 |R|^2=1 R2=1。故 R R R的行列式等于正负1,认为规定旋转矩阵行列式为1

参考:https://blog.csdn.net/lhxez6868/article/details/100165447

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值