14.多层感知机代码实现

要开始使用PyTorch进行手写数字识别(通常使用MNIST数据集),你可以按照以下步骤进行:

1. 安装PyTorch

首先,确保你已经安装了PyTorch。你可以通过PyTorch的官方网站(https://pytorch.org/get-started/locally/)获取安装指南,它提供了基于pip、conda或Docker的安装选项。

2. 准备数据集

MNIST数据集是一个广泛使用的手写数字识别数据集,包含60,000个训练样本和10,000个测试样本。你可以使用torchvision.datasets模块来下载和加载MNIST数据集。

3. 定义网络结构

对于手写数字识别,一个简单的多层感知机(MLP)或卷积神经网络(CNN)都可以工作得很好。使用PyTorch的nn.Module来定义你的网络结构。

4. 定义损失函数和优化器

选择一个合适的损失函数(如交叉熵损失)和优化器(如Adam优化器)来训练你的模型。

5. 编写训练循环

编写一个训练循环,包括数据加载、前向传播、计算损失、反向传播和优化器步骤。

6. 测试模型

在测试集上评估你的模型性能,通常使用准确率作为评价指标。

7. 保存和加载模型

训练完成后,保存你的模型以便将来使用。在需要时,加载模型并进行推理。

示例代码框架

以下是一个简单的示例代码框架,用于说明如何使用PyTorch进行手写数字识别:

import torch  
import torch.nn as nn  
import torch.optim as optim  
from torchvision import datasets, transforms  
from torch.utils.data import DataLoader  
  
# 数据预处理  
transform = transforms.Compose([  
    transforms.ToTensor(),  
    transforms.Normalize((0.5,), (0.5,))  
])  
  
# 加载数据集  
train_dataset = datasets.MNIST(root='./data', train=True, transform=transform, download=True)  
test_dataset = datasets.MNIST(root='./data', train=False, transform=transform)  
  
# 创建数据加载器  
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)  
test_loader = DataLoader(test_dataset, batch_size=1000, shuffle=False)  
  
# 定义多层感知机结构  
class Net(nn.Module):  
    def __init__(self):  
        super(Net, self).__init__()  
        self.fc1 = nn.Linear(28 * 28, 500)  
        self.fc2 = nn.Linear(500, 10)  
  
    def forward(self, x):  
        x = x.view(-1, 28 * 28)  # 展平图片  
        x = torch.relu(self.fc1(x))  
        x = self.fc2(x)  
        return torch.log_softmax(x, dim=1)  
  
# 初始化网络、损失函数和优化器  
net = Net()  
criterion = nn.CrossEntropyLoss()  
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.5)  
  
# 训练网络  
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")  
net.to(device)  
  
for epoch in range(2):  
    running_loss = 0.0  
    for i, data in enumerate(train_loader, 0):  
        # 获取输入和标签  
        inputs, labels = data[0].to(device), data[1].to(device)  
  
        # 梯度清零  
        optimizer.zero_grad()  
  
        # 前向传播  
        outputs = net(inputs)  
        loss = criterion(outputs, labels)  
  
        # 反向传播和优化  
        loss.backward()  
        optimizer.step()  
  
        # 打印统计信息  
        running_loss += loss.item()  
        if i % 2000 == 1999:  # 每2000个mini-batches打印一次  
            print('[%d, %5d] loss: %.3f' %  
                  (epoch + 1, i + 1, running_loss / 2000))  
            running_loss = 0.0  
  
print('Finished Training')  
  
# 测试网络  
correct = 0  
total = 0  
with torch.no_grad():  
    for data in test_loader:  
        images, labels = data[0].to(device), data[1].to(device)  
        outputs = net(images)  
        _, predicted = torch.max(outputs.data, 1)  
        total += labels.size(0)  
        correct += (predicted == labels).sum().item()  
  
print('Accuracy of the network on the 10000 test images: %d %%' % (  
    100 * correct / total))  
  
# 保存模型  
torch.save(net.state_dict(), 'mnist_mlp.pth')

这段代码定义了一个简单的多层感知机模型,它将28x28像素的图片展平为一维向量,然后送入两个全连接层进行分类。在训练过程中,我们同样使用交叉熵损失和SGD优化器。测试时,我们计算模型在测试集上的准确率,并将模型参数保存为一个文件。

 

你可以参考PyTorch的官方文档和教程(https://pytorch.org/tutorials/) 以及GitHub上的开源项目来深入了解更多细节和最佳实践。

  • 3
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值