大模型微调bitsandbytes报错(Windows有关cuda版本等)

大语言模型(LLaMa、qwen等)进行微调时,考虑到减少显存占用,会使用如下方式加载模型。

quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_use_double_quant=True,
    bnb_4bit_compute_dtype=torch.bfloat16
)
model = AutoModelForCausalLM.from_pretrained(
    model_dir,
    use_cache=False,
    device_map="cuda:0",
    torch_dtype=torch.bfloat16,
    quantization_config=quantization_config)

网上搜了若干方法,依旧报错,信息大致如下:

RuntimeError:
CUDA Setup failed despite GPU being available. Please run the following command to get more information: 
python -m bi​tsandbytes
Inspect the output of the command and see if you can locate CUDA libraries. You might need to add them to your LD_LIBRARY_PATH. ...


attributeerror: module 'bitsandbytes.nn' has no attribute 'linear4bit'

the `load_in_4bit` and `load_in_8bit` arguments are deprecated 
and will be removed in the future versions. 
please, pass a `bitsandbytesconfig` object in `quantization_config` argument instead.

attributeerror: 'nonetype' object has no attribute 'cquantize_blockwise_bf16_nf4'

the installed version of bitsandbytes was compiled without gpu support. 8-bit optimizers, 8-bit multiplication, and gpu quantization are unavailable.

终极解决办法:

pip uninstall bitsandbytes
pip install https://github.com/jllllll/bitsandbytes-windows-webui/releases/download/wheels/bitsandbytes-0.41.0-py3-none-win_amd64.whl

关于其他版本可自行查看下载

https://github.com/jllllll/bitsandbytes-windows-webui/releases/

最后:

小编会不定期发布相关设计内容包括但不限于如下内容:信号处理、通信仿真、算法设计、matlab appdesigner,gui设计、simulink仿真......希望能帮到你!

<think>好的,我现在需要处理用户关于在Windows系统上使用Llama Factory进行微调时遇到的错误的问题。首先,我要回忆一下Llama Factory在Windows上常见的问题。根据之前的经验,路径问题、依赖库冲突和环境配置错误是比较常见的。 用户提到引用了两篇资料,其中一篇关于下载LLaMA-Factory,另一篇关于Qwen模型与vLLM的推理加速。可能用户的环境配置有问题,或者依赖库版本不兼容。我需要先列出常见的错误类型,比如路径中的空格、缺少依赖库、CUDA版本不匹配等。 接下来,我应该分步骤给出解决方案。比如检查路径是否有空格,建议将项目放在无空格的路径下。然后检查Python环境和依赖,确保使用Python 3.8-3.10,安装正确的PyTorch版本,并通过requirements.txt安装依赖。CUDA相关的错误可能需要确认显卡驱动和CUDA版本是否匹配,以及安装合适的PyTorch版本。 此外,用户可能遇到文件权限问题,特别是Windows的权限限制较严格,需要以管理员身份运行或修改文件权限。内存不足的问题也需要考虑,建议调整batch size或者使用内存优化技术。 最后,需要提供如何获取更详细错误信息的方法,比如运行训练命令时添加--verbose参数,并建议查看官方文档和社区支持。同时生成相关问题,帮助用户进一步排查问题。 整个过程需要保持结构清晰,逐步引导用户检查可能的问题点,并给出具体的解决步骤。确保语言简洁,技术细节准确,同时引用提供的参考资料。</think>以下是为您整理的Windows系统上使用Llama Factory进行模型微调的常见问题解决方案: ### 一、常见错误类型及解决方案 1. **路径编码问题** - 现象:`UnicodeDecodeError`或文件路径相关报错 - 解决:将项目放置在**全英文无空格路径**(如`D:\llama_factory`),避免使用`C:\Program Files`等含空格路径[^2] 2. **依赖库冲突** ```bash # 建议创建独立虚拟环境 conda create -n llama_factory python=3.9 conda activate llama_factory pip install -r requirements.txt ``` - 需特别注意PyTorch版本匹配: $$ torch==2.0.1+cu117 $$ 通过[PyTorch官网](https://pytorch.org/)选择与CUDA 11.7兼容的版本 3. **CUDA相关错误** - 检查显卡驱动兼容性:`nvidia-smi`查看CUDA版本 - 典型错误`CUDA out of memory`解决方案: ```python # 修改train_config.yaml per_device_train_batch_size: 4 # 默认8可能过大 gradient_accumulation_steps: 2 ``` ### 二、诊断步骤 1. 运行基础检查命令: ```bash python src/train_bash.py check_env ``` 2. 启用详细日志模式: ```bash python src/train_bash.py --verbose ... ``` ### 三、Windows特有优化 1. 在`llama_factory.yaml`中添加: ```yaml windows_optimization: enable_shared_memory: false max_io_workers: 2 ``` 2. 使用WSL2可获得更好的兼容性(需Windows 10 2004+)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MatpyMaster

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值