解析函数与Cauchy-Riemann方程
课程目标
- 理解解析函数的定义,并掌握复合函数的可微性。
- 学会使用Cauchy-Riemann方程来判断复变函数是否解析。
- 理解Cauchy-Riemann方程的几何意义及其在复变函数映射中的应用。
- 通过实际案例分析解析函数的几何性质和映射效果。
一、解析函数的定义
1. 解析函数的定义
解析函数(或全纯函数)是指在某一区域内处处可微的复变函数。换句话说,如果一个复变函数 f ( z ) f(z) f(z) 在某个区域内的每个点都可微,并且这个可微性是连续的,那么这个函数就是解析的。
设 f ( z ) = u ( x , y ) + i v ( x , y ) f(z) = u(x, y) + iv(x, y) f(z)=u(x,y)+iv(x,y) 是复变函数,其中 u ( x , y ) u(x, y) u(x,y) 和 v ( x , y ) v(x, y) v(x,y) 分别是复数 z = x + i y z = x + iy z=x+iy 的实部和虚部, u u u 和 v v v 是 x x x 和 y y y 的函数。函数 f ( z ) f(z) f(z) 是解析函数,当且仅当它满足Cauchy-Riemann方程。
2. 复合函数的可微性
对于复合函数
f
(
g
(
z
)
)
f(g(z))
f(g(z)),其可微性需要通过链式法则进行判断。如果
f
(
z
)
f(z)
f(z) 和
g
(
z
)
g(z)
g(z) 都是解析函数,那么它们的复合函数也是解析的。这可以通过以下公式进行验证:
d
d
z
f
(
g
(
z
)
)
=
f
′
(
g
(
z
)
)
g
′
(
z
)
\frac{d}{dz} f(g(z)) = f'(g(z)) g'(z)
dzdf(g(z))=f′(g(z))g′(z)
这意味着如果两个函数都在其定义域内解析,那么它们的复合函数也一定是解析的。
二、Cauchy-Riemann方程
1. Cauchy-Riemann方程的推导
假设复变函数
f
(
z
)
=
u
(
x
,
y
)
+
i
v
(
x
,
y
)
f(z) = u(x, y) + iv(x, y)
f(z)=u(x,y)+iv(x,y) 在区域
D
D
D 内定义,其中
u
(
x
,
y
)
u(x, y)
u(x,y) 和
v
(
x
,
y
)
v(x, y)
v(x,y) 是
x
x
x 和
y
y
y 的连续函数。为了使得
f
(
z
)
f(z)
f(z) 在
D
D
D 内是可微的,必须满足Cauchy-Riemann方程:
∂
u
∂
x
=
∂
v
∂
y
,
∂
u
∂
y
=
−
∂
v
∂
x
\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}
∂x∂u=∂y∂v,∂y∂u=−∂x∂v
这两个方程描述了复变函数的实部和虚部之间的关系,确保了函数在复平面上的平滑变化。
2. Cauchy-Riemann方程的应用
通过检验Cauchy-Riemann方程,能够判断一个复变函数是否解析。即使函数的实部和虚部是连续的,只有当这两个方程成立时,函数才是解析的。通常的步骤如下:
- 将复变函数表示为 f ( z ) = u ( x , y ) + i v ( x , y ) f(z) = u(x, y) + iv(x, y) f(z)=u(x,y)+iv(x,y)。
- 计算 u u u 和 v v v 对 x x x 和 y y y 的偏导数。
- 检查Cauchy-Riemann方程是否成立。
3. Cauchy-Riemann方程的几何意义
Cauchy-Riemann方程不仅有代数意义,还有几何意义。它描述了复变函数映射的保形性。具体来说,如果一个复变函数满足Cauchy-Riemann方程,则该函数保持了局部的角度和形状,即该函数是保形的。也就是说,复变函数在局部不改变图形的形状,只是做了旋转、缩放或者平移等变换。
三、解析函数的几何性质与映射效果
1. 解析函数的几何性质
解析函数具有许多重要的几何性质,以下是其中一些重要性质:
- 保形性:如前所述,复变函数如果是解析的,它是保形的,即在复平面上不改变角度和形状。
- 局部线性化:在足够小的区域内,任何解析函数都可以近似为线性函数。
- 局部缩放与旋转:解析函数在局部区域内的映射可以看作是对原图形的旋转、缩放和扭曲。
2. 解析函数的映射效果
解析函数不仅在局部具有保形性,还能在全局范围内产生特定的映射效果。例如,复数的指数函数和对数函数在复平面中有独特的映射作用:
- 指数函数 f ( z ) = e z f(z) = e^z f(z)=ez:将复平面中的点映射到单位圆和射线,并且映射是周期性的。
- 对数函数 f ( z ) = ln z f(z) = \ln z f(z)=lnz:通过对数函数,复平面上的点映射到复数的幅角和模。
四、课堂活动:应用Cauchy-Riemann方程
活动1:用Cauchy-Riemann方程判断复变函数是否解析
例题1:判断函数 f ( z ) = z 2 f(z) = z^2 f(z)=z2 是否在 C \mathbb{C} C 上解析。
解答过程:
-
将函数 f ( z ) = z 2 f(z) = z^2 f(z)=z2 写成实部和虚部的形式:
u ( x , y ) = x 2 − y 2 u(x, y) = x^2 - y^2 u(x,y)=x2−y2 和 v ( x , y ) = 2 x y v(x, y) = 2xy v(x,y)=2xy。 -
计算偏导数:
∂ u ∂ x = 2 x , ∂ v ∂ y = 2 x \frac{\partial u}{\partial x} = 2x, \quad \frac{\partial v}{\partial y} = 2x ∂x∂u=2x,∂y∂v=2x
∂ u ∂ y = − 2 y , ∂ v ∂ x = 2 y \frac{\partial u}{\partial y} = -2y, \quad \frac{\partial v}{\partial x} = 2y ∂y∂u=−2y,∂x∂v=2y -
检查Cauchy-Riemann方程:
∂ u ∂ x = ∂ v ∂ y 和 ∂ u ∂ y = − ∂ v ∂ x \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \text{和} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} ∂x∂u=∂y∂v和∂y∂u=−∂x∂v
显然,方程成立,因此 f ( z ) = z 2 f(z) = z^2 f(z)=z2 是解析函数。
活动2:分析解析函数的几何性质和映射效果
例题2:考虑复变函数 f ( z ) = e z f(z) = e^z f(z)=ez。绘制 f ( z ) f(z) f(z) 在复平面中的映射效果。
解答过程:
- 复变函数 f ( z ) = e z f(z) = e^z f(z)=ez 将复平面中的每个点映射到单位圆和射线。通过绘制复数的模和幅角,可以观察指数函数如何将复平面映射到这些结构上。
五、Python代码实现示例
以下是用Python实现Cauchy-Riemann方程判断复变函数是否解析,并绘制函数映射效果的示例。
import numpy as np
import matplotlib.pyplot as plt
# 定义复数函数 f(z) = z^2 的实部和虚部
def u(x, y):
return x**2 - y**2
def v(x, y):
return 2 * x * y
# 计算偏导数
def du_dx(x, y):
return 2 * x
def dv_dy(x, y):
return 2 * x
def du_dy(x, y):
return -2 * y
def dv_dx(x, y):
return 2 * y
# 判断Cauchy-Riemann方程是否成立
def check_Cauchy_Riemann(x, y):
return du_dx(x, y) == dv_dy(x, y) and du_dy(x, y) == -dv_dx(x, y)
# 测试点
x, y = 1, 2
if check_Cauchy_Riemann(x, y):
print(f"函数 f(z) = z^2 在点 ({x}, {y}) 解析。")
else:
print(f"函数 f(z) = z^2 在点 ({x}, {y}) 不解析。")
# 绘制复数的映射效果 f(z) = e^z
X = np.linspace(-2, 2, 100)
Y = np.linspace(-2, 2, 100)
X, Y = np.meshgrid(X, Y)
Z = np.exp(X + 1j*Y)
plt.figure(figsize=(6, 6))
plt.quiver(X, Y, np.real(Z), np.imag(Z), color='blue')
plt.title("映射效果 f(z) = e^z")
plt.xlabel("Re(z)")
plt.ylabel("Im(z)")
plt.grid(True)
plt.show()
总结
本堂课深入探讨了解析函数和Cauchy-Riemann方程的定义、推导及应用。通过具体例子,学生了解了如何使用Cauchy-Riemann方程判断复变函数是否解析,并理解了解析函数的几何性质,如保形性以及函数映射的效果。此外,课堂活动帮助学生通过实际问题加深对复变函数的理解,同时利用Python代码进一步探索解析函数的应用。