复变函数论(七)-共形映射1-解析变换的特性1:解析变换的保域性

前几章主要是用分析的方法,也就是用微分、积分和级数等来讨论解析函数的性质和应用.内容主要涉及柯西理论. 在这一章中,
我们将从几何的角度来对解析函数的性质和应用进行讨论。

第一章我们曾经说过, 一个复变函数 w = f ( z ) ( z ∈ E ) w=f(z)(z \in E) w=f(z)(zE), 从几何观点看来,可以解释为从 z z z 平面到 w w w 平面之间的一个变换,本章将讨论解析函数所构成的变换(简称解析变换) 的某些重要特性. 我们将看到,这种变换在导数不为零的点处具有一种保角的特性,它在数学本身以及在解决流体力学、弹性力学、电学等学科的某些实际问题中,都是一种使问题化繁为简的重要方法.


定理 7.1 (保域定理)

w = f ( z ) w=f(z) w=f(z) 在区域 D D D 内解析且不恒为常数. 则 D D D的像 G = G= G= f ( D ) f(D) f(D) 也是一个区域.


首先证明 G G G 的每一点都是内点. 设 w 0 ∈ G w_{0} \in G w0G, 则有一点 z 0 ∈ D z_{0} \in D z0D, 使 w 0 = f ( z 0 ) w_{0}=f\left(z_{0}\right) w0=f(z0).要证 w 0 w_{0} w0 G G G的内点, 只需证明 w w w. 与 w 0 w_{0} w0 充分接近时, w w w. 亦属于 G G G, 即是说,只需证明, 当 w w w. 与 w 0 w_{0} w0 充分接近时, 方程 w = f ( z ) w=f(z) w=f(z) D D D 内有解.
为此, 考察

f ( z ) − w 0 = f ( z ) − w 0 + w 0 − w . , f(z)-w_{0}=f(z)-w_{0}+w_{0}-w_{.}, f(

  • 22
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
蛋白质是生物体中普遍存在的一类重要生物大分子,由天然氨基酸通过肽键连接而成。它具有复杂的分子结构和特定的生物功能,是表达生物遗传性状的一类主要物质。 蛋白质的结构可分为四级:一级结构是组成蛋白质多肽链的线性氨基酸序列;二级结构是依靠不同氨基酸之间的C=O和N-H基团间的氢键形成的稳定结构,主要为α螺旋和β折叠;三级结构是通过多个二级结构元素在三维空间的排列所形成的一个蛋白质分子的三维结构;四级结构用于描述由不同多肽链(亚基)间相互作用形成具有功能的蛋白质复合物分子。 蛋白质在生物体内具有多种功能,包括提供能量、维持电解质平衡、信息交流、构成人的身体以及免疫等。例如,蛋白质分解可以为人体提供能量,每克蛋白质能产生4千卡的热能;血液里的蛋白质能帮助维持体内的酸碱平衡和血液的渗透压;蛋白质是组成人体器官组织的重要物质,可以修复受损的器官功能,以及维持细胞的生长和更新;蛋白质也是构成多种生理活性的物质,如免疫球蛋白,具有维持机体正常免疫功能的作用。 蛋白质的合成是指生物按照从脱氧核糖核酸(DNA)转录得到的信使核糖核酸(mRNA)上的遗传信息合成蛋白质的过程。这个过程包括氨基酸的活化、多肽链合成的起始、肽链的延长、肽链的终止和释放以及蛋白质合成后的加工修饰等步骤。 蛋白质降解是指食物中的蛋白质经过蛋白质降解酶的作用降解为多肽和氨基酸然后被人体吸收的过程。这个过程在细胞的生理活动中发挥着极其重要的作用,例如将蛋白质降解后成为小分子的氨基酸,并被循环利用;处理错误折叠的蛋白质以及多余组分,使之降解,以防机体产生错误应答。 总的来说,蛋白质是生物体内不可或缺的一类重要物质,对于维持生物体的正常生理功能具有至关重要的作用。
解析函数是复变函数理论中的一个重要概念,它在实际应用中具有广泛的应用。以下是一些关于解析函数的知识点: 1. 解析函数的定义:解析函数是指在某一区域内处处可导,即在该区域内的每一点都存在导数的复变函数。如果一个函数在某一点不可导,则称该函数在该点不解析。 2. 柯西-黎曼方程:解析函数的导数满足柯西-黎曼方程,即在复平面上的任意一点,函数的实部和虚部的一阶偏导数存在且相等。即:∂u/∂x = ∂v/∂y 和 ∂u/∂y = -∂v/∂x,其中u表示函数的实部,v表示函数的虚部。 3. 柯西-黎曼定理:如果一个函数在某一区域内解析,则它在该区域内具有无限阶导数。因此,每个解析函数都可以展开为泰勒级数,并且泰勒级数在其收敛半径内收敛于原函数。 4. 函数的奇点:函数的奇点是指在该点处函数不解析的点。奇点分为极点和本性奇点两种。极点是指当函数趋近于该点时,函数的模长趋近于无穷大,本性奇点是指函数在该点附近的模长没有界限。 5. 函数的留数:函数在某个奇点处的留数是该奇点处的柯西积分的值。留数是解析函数理论中的一个重要概念,它在复积分计算中具有重要的应用。 总的来说,解析函数是复变函数理论中的一个重要概念,掌握解析函数的定义、柯西-黎曼方程、柯西-黎曼定理、函数奇点和留数等知识点,对于理解和应用复变函数理论具有重要的帮助。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值