复变函数论(七)-共形映射1-解析变换的特性1:解析变换的保域性

前几章主要是用分析的方法,也就是用微分、积分和级数等来讨论解析函数的性质和应用.内容主要涉及柯西理论. 在这一章中,
我们将从几何的角度来对解析函数的性质和应用进行讨论。

第一章我们曾经说过, 一个复变函数 w = f ( z ) ( z ∈ E ) w=f(z)(z \in E) w=f(z)(zE), 从几何观点看来,可以解释为从 z z z 平面到 w w w 平面之间的一个变换,本章将讨论解析函数所构成的变换(简称解析变换) 的某些重要特性. 我们将看到,这种变换在导数不为零的点处具有一种保角的特性,它在数学本身以及在解决流体力学、弹性力学、电学等学科的某些实际问题中,都是一种使问题化繁为简的重要方法.


定理 7.1 (保域定理)

w = f ( z ) w=f(z) w=f(z) 在区域 D D D 内解析且不恒为常数. 则 D D D的像 G = G= G= f ( D ) f(D) f(D) 也是一个区域.


首先证明 G G G 的每一点都是内点. 设 w 0 ∈ G w_{0} \in G w0G, 则有一点 z 0 ∈ D z_{0} \in D z0D, 使 w 0 = f ( z 0 ) w_{0}=f\left(z_{0}\right) w0=f(z0).要证 w 0 w_{0} w0 G G G的内点, 只需证明 w w w. 与 w 0 w_{0} w0 充分接近时, w w w. 亦属于 G G G, 即是说,只需证明, 当 w w w. 与 w 0 w_{0} w0 充分接近时, 方程 w = f ( z ) w=f(z) w=f(z) D D D 内有解.
为此, 考察

f ( z ) − w 0 = f ( z ) − w 0 + w 0 − w . , f(z)-w_{0}=f(z)-w_{0}+w_{0}-w_{.}, f(

  • 22
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值