【论文笔记】:CenterNet: Keypoint Triplets for Object Detection

CenterNet是一种改进的CornerNet目标检测方法,通过增加中心关键点来提高精度和召回率,减少误检。通过中心点池化和级联角点池化丰富了角点和中心信息,提高目标检测质量。在MS-COCO数据集上,CenterNet实现了47.0%的AP,优于同类one-stage方法。
摘要由CSDN通过智能技术生成

&Title:

&Summary

基于关键点的目标检测方法,如:CornerNet,常常出现很多边界框不正确,原因在于缺少对裁剪框中内容做进一步校验。本文找到一种基于最小代价情况下探究各个裁剪框内视觉模式的方法。基于此前one-stage的CornerNet做的改进(baseline:CornerNet),我们方法叫做CenterNet,将每个检测目标看做是三点(triplet),而不是仅有一对关键点构成,此举改善了精度和召回率。

相应地,本文还设计了两个自定义模块,分别叫做cascade corner pooling(级联角点池化)center pooling(中心点池化),各自的作用是丰富了利用左上和右下角收集的信息,提供更多中心区域的识别信息;

在MS-COCO数据集上,本方法获得AP 47.0%,比现有one-stage方法高4.9%至少,且速度更快,此外与two-stage方法性能也有可比性。

&Research Objective

抑制CornerNet目标检测方法中,检测目标出现的误检问题。

解决了CornerNet缺乏对区域的额外关注的问题,即通过在每个建议区域内以最小的成本探索视觉模式

&Problem Statement

目前的检测算法主要思路还是设置大量Anchor+分配正负样本+训练的一个思路,Anchor的本质是目标的候选框,因为目标的形状和位置的多种可能性,Anchor的数量往往非常庞大,否则会出现遗漏的情况,这种情况对于one-stage的检测算法更加突出。因此会带来两个问题:

  • 大量的Anchor中只有少部分和gt的重合比较大,可以作为正样本训练,其它都是负样本,换而言之,正负样本均衡问题,这几乎是所有检测算法都要考虑的问题,不同算法往往也会有不同的策略。
  • Anchor的设置本身也是需要超参数的(形状、个数怎么设置),在multi-scale的时候会更加明显,YOLOv2曾经用5个anchor达到了faster rcnn中9个anchor的效果,说明这方面确实也是有很多可以做的地方。

为了克服如上问题,提出了基于关键点的目标检测方法——CornerNet;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值